Fabrication of 3D nanostructured electrocatalysts for fuel cell electrodes via proximity-field nanoPatterning근접장 나노패터닝 기술을 통한 3차원 다공성 전극소재 제작 및 연료전지 응용

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 654
  • Download : 0
Ordered porous nanostructures are attractive for various electrochemical applications because of their structural advantages: relatively large surface areas, interconnected pores, and high diffusion rates of reactants. First, the three dimensional carbon supports, decorated with platinum nanoparticles, were made by the supported alumina shell carbonization process of the SU8 photoresist. The differences between the shrinkages of the alumina and the photoresist made the large porosity on its surface, and the platinum nanoparticles decorated the carbon supports successfully by the confined activation process. Second, hierarchically porous platinum nanostructures were derived from the dealloying process of nickel-rich $Ni_{80}Pt_{20}$ alloys. The nickel and platinum atoms moved during the dealloying process, and there were tiny nanopores because of the slow surface diffusion rate of platinum. The hierarchically porous platinum nanostructures were free from the degradation of the carbon supports and reduced the amount of platinum per unit area. Herein, we fabricated these two nanostructured electrocatalysts and saw the possibility of the usage for fuel cell electrodes by the oxygen reduction reaction test. We expected that compared with the conventional electrocatalysts, these ordered porous nanostructures improve the effective porosity, the mass transfer, and the water management owing to their structural advantages. Moreover, the pores on the hierarchically porous nanostructures are totally interconnected; therefore, they were expected to enhance the electrical conductivity, electrochemical surface area, and platinum utilization.
Advisors
Jeon, Seokwooresearcher전석우researcher
Description
한국과학기술원 :신소재공학과,
Publisher
한국과학기술원
Issue Date
2016
Identifier
325007
Language
eng
Description

학위논문(석사) - 한국과학기술원 : 신소재공학과, 2016.8 ,[iii, 49 p. :]

Keywords

3D nanopatterning; Proximity field nanopatterning (PnP); Carbonization; Electroplating of platinum/platinum alloys; Dealloying; Hierarchically porous; Ordered porous; Electrocatalyst; Fuel cell electrodes; Polymer electrolyte membrane fuel cell (PEMFC); 근접장 나노패터닝; 고분자 전해질 연료전지 전극; 정렬된 3차원 다공성 구조; 전기화학촉매; 백금촉매

URI
http://hdl.handle.net/10203/221606
Link
http://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=663406&flag=dissertation
Appears in Collection
MS-Theses_Master(석사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0