FPGA-based design and implementation of data acquisition and real-time processing for laser ultrasound propagation

Cited 11 time in webofscience Cited 0 time in scopus
  • Hit : 597
  • Download : 0
Ultrasonic propagation imaging (UPI) has shown great potential for detection of impairments in complex structures and can be used in wide range of non-destructive evaluation and structural health monitoring applications. The software implementation of such algorithms showed a tendency in time-consumption with increment in scan area because the processor shares its resources with a number of programs running at the same time. This issue was addressed by using field programmable gate arrays (FPGA) that is a dedicated processing solution and used for high speed signal processing algorithms. For this purpose, we need an independent and flexible block of logic which can be used with continuously evolvable hardware based on FPGA. In this paper, we developed an FPGA-based ultrasonic propagation imaging system, where FPGA functions for both data acquisition system and real-time ultrasonic signal processing. The developed UPI system using FPGA board provides better cost-effectiveness and resolution than digitizers, and much faster signal processing time than CPU which was tested using basic ultrasonic propagation algorithms such as ultrasonic wave propagation imaging and multi-directional adjacent wave subtraction. Finally, a comparison of results for processing time between a CPU-based UPI system and the novel FPGA-based system were presented to justify the objective of this research.
Publisher
KOREAN SOC AERONAUTICAL & SPACE SCIENCES
Issue Date
2016-12
Language
English
Article Type
Article
Citation

INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, v.17, no.4, pp.467 - 475

ISSN
2093-274X
DOI
10.5139/IJASS.2016.17.4.467
URI
http://hdl.handle.net/10203/220991
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0