On exact solutions to the Euclidean bottleneck Steiner tree problem

Cited 16 time in webofscience Cited 17 time in scopus
  • Hit : 962
  • Download : 33
DC FieldValueLanguage
dc.contributor.authorBae, Sang-Wonko
dc.contributor.authorLee, Chun-Seokko
dc.contributor.authorChoi, Sung-Heeko
dc.date.accessioned2011-02-14T01:28:36Z-
dc.date.available2011-02-14T01:28:36Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2010-07-
dc.identifier.citationINFORMATION PROCESSING LETTERS, v.110, no.16, pp.672 - 678-
dc.identifier.issn0020-0190-
dc.identifier.urihttp://hdl.handle.net/10203/22084-
dc.description.abstractWe study the Euclidean bottleneck Steiner tree problem: given a set P of n points in the Euclidean plane and a positive integer k, find a Steiner tree with at most k Steiner points such that the length of the longest edge in the tree is minimized. This problem is known to be NP-hard even to approximate within ratio root 2 and there was no known exact algorithm even for k = 1 prior to this work. In this paper, we focus on finding exact solutions to the problem for a small constant k. Based on geometric properties of optimal location of Steiner points, we present an optimal Theta(n log n)-time exact algorithm for k = 1 and an O(n(2))-time algorithm for k = 2. Also, we present an optimal Theta(n log n)-time exact algorithm for any constant k for a special case where there is no edge between Steiner points. (C) 2010 Elsevier B.V. All rights reserved.-
dc.description.sponsorshipThe authors thank anonymous referees for valuable comments to improve our paper.en
dc.languageEnglish-
dc.language.isoen_USen
dc.publisherELSEVIER SCIENCE BV-
dc.subjectAPPROXIMATION ALGORITHM-
dc.subjectPLANE-
dc.titleOn exact solutions to the Euclidean bottleneck Steiner tree problem-
dc.typeArticle-
dc.identifier.wosid000280205500012-
dc.identifier.scopusid2-s2.0-77953650348-
dc.type.rimsART-
dc.citation.volume110-
dc.citation.issue16-
dc.citation.beginningpage672-
dc.citation.endingpage678-
dc.citation.publicationnameINFORMATION PROCESSING LETTERS-
dc.identifier.doi10.1016/j.ipl.2010.05.014-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorChoi, Sung-Hee-
dc.contributor.nonIdAuthorBae, Sang-Won-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorComputational geometry-
dc.subject.keywordAuthorBottleneck Steiner tree-
dc.subject.keywordAuthorExact algorithm-
dc.subject.keywordAuthorFarthest-color Voronoi diagram-
dc.subject.keywordPlusAPPROXIMATION ALGORITHM-
dc.subject.keywordPlusPLANE-
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 16 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0