Geometric derivation of the Delaunay variables and geometric phases

Cited 12 time in webofscience Cited 0 time in scopus
  • Hit : 150
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChang, Dong Euiko
dc.contributor.authorMarsden, JEko
dc.date.accessioned2017-03-28T05:28:27Z-
dc.date.available2017-03-28T05:28:27Z-
dc.date.created2017-02-13-
dc.date.created2017-02-13-
dc.date.issued2003-06-
dc.identifier.citationCELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, v.86, no.2, pp.185 - 208-
dc.identifier.issn0923-2958-
dc.identifier.urihttp://hdl.handle.net/10203/220734-
dc.description.abstractWe derive the classical Delaunay variables by finding a suitable symmetry action of the three torus T-3 on the phase space of the Kepler problem, computing its associated momentum map and using the geometry associated with this structure. A central feature in this derivation is the identification of the mean anomaly as the angle variable for a symplectic S-1 action on the union of the non-degenerate elliptic Kepler orbits. This approach is geometrically more natural than traditional ones such as directly solving Hamilton-Jacobi equations, or employing the Lagrange bracket. As an application of the new derivation, we give a singularity free treatment of the averaged J(2)-dynamics (the effect of the bulge of the Earth) in the Cartesian coordinates by making use of the fact that the averaged J(2)-Hamiltonian is a collective Hamiltonian of the T-3 momentum map. We also use this geometric structure to identify the drifts in satellite orbits due to the J(2) effect as geometric phases.-
dc.languageEnglish-
dc.publisherKLUWER ACADEMIC PUBL-
dc.subjectARTIFICIAL-SATELLITE THEORY-
dc.subjectREDUCTION-
dc.subjectORBITS-
dc.titleGeometric derivation of the Delaunay variables and geometric phases-
dc.typeArticle-
dc.identifier.wosid000183441500005-
dc.identifier.scopusid2-s2.0-0347126348-
dc.type.rimsART-
dc.citation.volume86-
dc.citation.issue2-
dc.citation.beginningpage185-
dc.citation.endingpage208-
dc.citation.publicationnameCELESTIAL MECHANICS & DYNAMICAL ASTRONOMY-
dc.identifier.doi10.1023/A:1024174702036-
dc.contributor.localauthorChang, Dong Eui-
dc.contributor.nonIdAuthorMarsden, JE-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorKepler vector field-
dc.subject.keywordAuthorderivation of variables-
dc.subject.keywordAuthororbits dynamics and phases-
dc.subject.keywordPlusARTIFICIAL-SATELLITE THEORY-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusORBITS-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0