On rational maps from the product of two general curves

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 252
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Yongnamko
dc.contributor.authorPirola, Gianpietroko
dc.date.accessioned2017-01-13T05:00:12Z-
dc.date.available2017-01-13T05:00:12Z-
dc.date.created2016-12-27-
dc.date.created2016-12-27-
dc.date.issued2016-12-
dc.identifier.citationANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, v.16, no.4, pp.1139 - 1152-
dc.identifier.issn0391-173X-
dc.identifier.urihttp://hdl.handle.net/10203/218736-
dc.description.abstractThis paper treats dominant rational maps from the product of two very general curves to nonsingular projective surfaces. Combining the result in [5] we prove that the product of two very general curves of genus g >= 7 and g' >= 3 does not admit dominant rational maps of degree > 1 if the image surface is non-ruled. We also treat the case of the 2-symmetric product of a curve.-
dc.languageEnglish-
dc.publisherSCUOLA NORMALE SUPERIORE-
dc.subjectPLURICANONICAL SYSTEMS-
dc.subjectVARIETIES-
dc.subjectSURFACES-
dc.titleOn rational maps from the product of two general curves-
dc.typeArticle-
dc.identifier.wosid000392808900004-
dc.identifier.scopusid2-s2.0-85019003608-
dc.type.rimsART-
dc.citation.volume16-
dc.citation.issue4-
dc.citation.beginningpage1139-
dc.citation.endingpage1152-
dc.citation.publicationnameANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE-
dc.contributor.localauthorLee, Yongnam-
dc.contributor.nonIdAuthorPirola, Gianpietro-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusPLURICANONICAL SYSTEMS-
dc.subject.keywordPlusVARIETIES-
dc.subject.keywordPlusSURFACES-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0