EEG-Based Classification of Implicit Intention During Self-Relevant Sentence Reading

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 465
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorDong, Suh Yeonko
dc.contributor.authorKim, Bo-Kyeongko
dc.contributor.authorLee, Soo-Youngko
dc.date.accessioned2016-11-30T08:32:11Z-
dc.date.available2016-11-30T08:32:11Z-
dc.date.created2015-11-23-
dc.date.created2015-11-23-
dc.date.created2015-11-23-
dc.date.created2015-11-23-
dc.date.issued2016-11-
dc.identifier.citationIEEE TRANSACTIONS ON CYBERNETICS, v.46, no.11, pp.2535 - 2542-
dc.identifier.issn2168-2267-
dc.identifier.urihttp://hdl.handle.net/10203/214229-
dc.description.abstractFrom electroencephalography (EEG) data during self-relevant sentence reading, we were able to discriminate two implicit intentions: 1) "agreement" and 2) "disagreement" to the read sentence. To improve the classification accuracy, discriminant features were selected based on Fisher score among EEG frequency bands and electrodes. Especially, the time-frequency representation with Morlet wavelet transforms showed clear differences in gamma, beta, and alpha band powers at frontocentral area, and theta band power at centroparietal area. The best classification accuracy of 75.5% was obtained by a support vector machine classifier with the gamma band features at frontocentral area. This result may enable a new intelligent user-interface which understands users' implicit intention, i.e., unexpressed or hidden intention.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleEEG-Based Classification of Implicit Intention During Self-Relevant Sentence Reading-
dc.typeArticle-
dc.identifier.wosid000386227000012-
dc.identifier.scopusid2-s2.0-85027692526-
dc.type.rimsART-
dc.citation.volume46-
dc.citation.issue11-
dc.citation.beginningpage2535-
dc.citation.endingpage2542-
dc.citation.publicationnameIEEE TRANSACTIONS ON CYBERNETICS-
dc.identifier.doi10.1109/TCYB.2015.2479240-
dc.contributor.localauthorLee, Soo-Young-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorAgreement/disagreement-
dc.subject.keywordAuthorelectroencephalography (EEG)-
dc.subject.keywordAuthorimplicit intention-
dc.subject.keywordAuthorself-relevance-
dc.subject.keywordPlusINDEPENDENT COMPONENT ANALYSIS-
dc.subject.keywordPlusBRAIN-COMPUTER INTERFACE-
dc.subject.keywordPlusLANGUAGE COMPREHENSION-
dc.subject.keywordPlusLIE DETECTION-
dc.subject.keywordPlusCOMMUNICATION-
dc.subject.keywordPlusINFORMATION-
dc.subject.keywordPlusRESPONSES-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0