One-pot synthesis of Pd@Pt core-shell nanocrystals for electrocatalysis: control of crystal morphology with polyoxometalate

Cited 9 time in webofscience Cited 0 time in scopus
  • Hit : 734
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorSeog, Ji Hyunko
dc.contributor.authorKim, Dongheunko
dc.contributor.authorKim, Yenako
dc.contributor.authorKim, Nam Sooko
dc.contributor.authorLee, Sang Bokko
dc.contributor.authorHan, Sang Wooko
dc.date.accessioned2016-11-09T05:03:05Z-
dc.date.available2016-11-09T05:03:05Z-
dc.date.created2016-10-05-
dc.date.created2016-10-05-
dc.date.created2016-10-05-
dc.date.created2016-10-05-
dc.date.issued2016-08-
dc.identifier.citationCRYSTENGCOMM, v.18, no.32, pp.6029 - 6034-
dc.identifier.issn1466-8033-
dc.identifier.urihttp://hdl.handle.net/10203/213731-
dc.description.abstractPt-based bimetallic nanocrystals (NCs) are an important class of catalytic materials especially in the area of energy conversion due to their outstanding catalytic performance. The catalytic function of Pt-based bimetallic NCs toward a specific catalysis reaction can be optimized by tailoring their surface structure, which can be realized through the precise control of the NC morphology. In the present work, we developed a facile one-pot polyoxometalate (POM)-mediated synthesis approach for the synthesis of Pt-based bimetallic NCs with controlled morphologies and fine crystal structures, and investigated the influence of their morphology on their catalytic function. Pd@Pt core-shell NCs with well-defined morphologies and controlled surface structures could be prepared by the simultaneous reduction of Pt and Pd precursors in the presence of a typical Keggin-type POM (H3PMo12O40) and ascorbic acid (AA). During the formation of NCs, the POMs served not only as a stabilizing agent but also a reducing agent. Notably, the presence of the POMs as well as the relative concentration of AA to metal precursors could afford fine control over the growth mode of the Pt shells on the Pd cores, and thus the final morphology of the Pd@ Pt NCs. The prepared POM-passivated Pd@ Pt NCs outperformed Pd@ Pt NCs synthesized without the POMs as well as a commercial Pt/C catalyst for the electrooxidation of methanol, and their catalytic activity and stability distinctly depended on their Pt shell structure. We envision that this strategy will pave the way for the rational design of NC-based catalyst systems-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleOne-pot synthesis of Pd@Pt core-shell nanocrystals for electrocatalysis: control of crystal morphology with polyoxometalate-
dc.typeArticle-
dc.identifier.wosid000381432500009-
dc.identifier.scopusid2-s2.0-84982108608-
dc.type.rimsART-
dc.citation.volume18-
dc.citation.issue32-
dc.citation.beginningpage6029-
dc.citation.endingpage6034-
dc.citation.publicationnameCRYSTENGCOMM-
dc.identifier.doi10.1039/c6ce00816j-
dc.contributor.localauthorHan, Sang Woo-
dc.contributor.nonIdAuthorKim, Dongheun-
dc.contributor.nonIdAuthorKim, Nam Soo-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusMETHANOL ELECTROOXIDATION-
dc.subject.keywordPlusBIMETALLIC NANODENDRITES-
dc.subject.keywordPlusCOLLOIDAL NANOCRYSTALS-
dc.subject.keywordPlusMETAL NANOCRYSTALS-
dc.subject.keywordPlusSURFACE LIGANDS-
dc.subject.keywordPlusSHAPE CONTROL-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusALLOY-
dc.subject.keywordPlusNANOSTRUCTURES-
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0