Weighting in survey analysis under informative sampling

Cited 19 time in webofscience Cited 0 time in scopus
  • Hit : 126
  • Download : 0
Sampling related to the outcome variable of a regression analysis conditional on covariates is called informative sampling and may lead to bias in ordinary least squares estimation. Weighting by the reciprocal of the inclusion probability approximately removes such bias but may inflate variance. This paper investigates two ways of modifying such weights to improve efficiency while retaining consistency. One approach is to multiply the inverse probability weights by functions of the covariates. The second is to smooth the weights given values of the outcome variable and covariates. Optimal ways of constructing weights by these two approaches are explored. Both approaches require the fitting of auxiliary weight models. The asymptotic properties of the resulting estimators are investigated and linearization variance estimators are obtained. The approach is extended to pseudo maximum likelihood estimation for generalized linear models. The properties of the different weighted estimators are compared in a limited simulation study. The robustness of the estimators to misspecification of the auxiliary weight model or of the regression model of interest is discussed
Publisher
OXFORD UNIV PRESS
Issue Date
2013-06
Language
English
Article Type
Article
Keywords

REGRESSION; MODELS

Citation

BIOMETRIKA, v.100, no.2, pp.385 - 398

ISSN
0006-3444
DOI
10.1093/biomet/ass085
URI
http://hdl.handle.net/10203/213003
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 19 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0