If the system of two diophantine equations X-2 + mY(2) = Z(2) and X-2 + nY(2) = W-2 has infinitely many integer solutions (X, Y, Z, W) with gcd(X, Y) = 1, equivalently, the elliptic curve E-m,E-n : y(2) = x(x + m)(x + n) has positive rank over Q, then (m, n) is called a strongly concordant pair. We prove that for a given positive integer M and an integer k, the number of strongly concordant pairs (m, n) with m, n is an element of [1, N] and m, n equivalent to k is at least O(N), and we give a parametrization of them

- Publisher
- AMER MATHEMATICAL SOC

- Issue Date
- 2013-03

- Language
- English

- Article Type
- Article

- Keywords
FORMS

- Citation
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, v.141, no.3, pp.791 - 800

- ISSN
- 0002-9939

- Appears in Collection
- MA-Journal Papers(저널논문)

- Files in This Item
- There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.