Weierstrass points on certain modular groups

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 431
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorIm, Bo-Haeko
dc.contributor.authorJeon, Daeyeolko
dc.contributor.authorKim, Chang Heonko
dc.date.accessioned2016-09-08T00:50:54Z-
dc.date.available2016-09-08T00:50:54Z-
dc.date.created2016-09-07-
dc.date.created2016-09-07-
dc.date.issued2016-03-
dc.identifier.citationJOURNAL OF NUMBER THEORY, v.160, pp.586 - 602-
dc.identifier.issn0022-314X-
dc.identifier.urihttp://hdl.handle.net/10203/212928-
dc.description.abstractWe investigate Weierstrass points of the modular curve X-Delta(N) of genus >= 2 when Delta is a proper subgroup of (Z/NZ)*. Let N = p(2)M where p is a prime number and M is a positive integer. Modifying Atkin's method in the case +/-(1 + pM) is an element of A, we find conditions for the cusp 0 to be a Weierstrass point on the modular curve X-Delta(p(2)M). Moreover, applying Schoneberg's theorem we show that except for finitely many N, the fixed points of the Fricke involutions W-N are Weierstrass points on X-Delta(N). (C) 2015 Elsevier Inc. All rights reserved-
dc.languageEnglish-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.titleWeierstrass points on certain modular groups-
dc.typeArticle-
dc.identifier.wosid000365928300031-
dc.identifier.scopusid2-s2.0-84946762437-
dc.type.rimsART-
dc.citation.volume160-
dc.citation.beginningpage586-
dc.citation.endingpage602-
dc.citation.publicationnameJOURNAL OF NUMBER THEORY-
dc.identifier.doi10.1016/j.jnt.2015.09.018-
dc.contributor.localauthorIm, Bo-Hae-
dc.contributor.nonIdAuthorJeon, Daeyeol-
dc.contributor.nonIdAuthorKim, Chang Heon-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorWeierstrass points-
dc.subject.keywordAuthorModular curves-
dc.subject.keywordPlusCURVES-
dc.subject.keywordPlusCUSPS-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0