Active vibration isolation systems (AVIS) reduce the vibrations transmitted to ultraprecision mechanical systems by providing managed stiffness and damping. Many types of AVIS are used in various fields. In nanoprecision measuring instrument fields, such as atomic force microscopy and scanning probe microscopy, the requirement for isolation of ground vibrations has always been of great interest to researchers. Bench-top-type six-degree-of-freedom (6-DOF) AVIS have been widely used in ultraprecision measuring applications. This paper describes the design, modeling, optimization, and validation of a new 6-DOF AVIS. The unique feature of the proposed system is its voice coil motor actuator that uses a Halbach magnet array to produce a high force constant. The results obtained using the proposed AVIS show that it can serve as a bench-top device for precision measuring machines