Adsorption and Co-adsorption of Ethylene and Carbon Monoxide on Silica-Supported Monodisperse Pt Nanoparticles; Volumetric Adsorption and Infrared Spectroscopy Studies

Cited 0 time in webofscience Cited 59 time in scopus
  • Hit : 409
  • Download : 5
DC FieldValueLanguage
dc.contributor.authorSong, Hyunjoon-
dc.date.accessioned2010-12-07T01:26:08Z-
dc.date.available2010-12-07T01:26:08Z-
dc.date.issued2008-
dc.identifier.citationLangmuir, Vol.24, pp.198-207en
dc.identifier.issn0743-7463-
dc.identifier.urihttp://hdl.handle.net/10203/20792-
dc.description.abstractThe adsorption of carbon monoxide and ethylene, and their sequential adsorption, was studied over a series of Pt/SBA-15 catalysts with monodisperse particle sizes ranging from 1.7 to 7.1 nm by diffuse-reflectance infrared spectroscopy and chemisorption. Gas adsorption was dependent on the Pt particle size, temperature, and sequence of gas exposure. Adsorption of CO at room temperature on Pt/SBA-15 gives rise to a spectroscopic feature assigned to the C-O stretch: î(CO) ) 2075 cm-1 (1.9 nm); 2079 cm-1 (2.9 nm); 2082 cm-1 (3.6 nm); and 2090 cm-1 (7.1 nm). The intensity of the signal decreased in a sigmoidal fashion with increasing temperature, thereby providing semiquantitative surface coverage information. Adsorption of ethylene on Pt/SBA-15 gave rise to spectroscopic features at 1340, 1420, and 1500 cm-1 assigned to ethylidyne, di-ó-bonded ethylene, and ð-bonded ethylene, respectively. The ratio of these surface species is highly dependent on the Pt particle size. At room temperature, Pt particles stabilize ethylidyne as well as di-ó- and ð-bonded ethylene; however, thylidyne predominated on the surfaces of larger particles. Ethylidyne was the only identifiable species at 403 K, with its formation being more facile on larger particles. Co-adsorption experiments reveal that the composition of the surface layer is dependent on the order of exposure to gases. Exposure of a C2H4-covered Pt surface to CO resulted in an50% decrease in chemisorbed CO compared to a fresh Pt surface. The î(CO) appeared at 2050 cm-1 on Pt/SBA-15 pretreated with C2H4 at room temperature. The di-ó-bonded and ð-bonded species are the most susceptible to displacement from the surface by CO. The formation of ethylidyne appeared to be less sensitive to the presence of adsorbed carbon monoxide, especially on larger particles. Upon exposure of C2H4 to a CO-covered Pt surface, little irreversible uptake occurred due to nearly 100% site blocking. These results demonstrate that carbon monoxide competes directly with ethylene for surface sites, which will have direct implications on the poisoning of the heterogeneously catalyzed conversion of hydrocarbons.en
dc.description.sponsorshipThis work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to acknowledge Professor M. A. Vannice of the Pennsylvania State University for donation of the Pt/SiO2 catalyst and Dr. Samrat Mukherjee for its preparation. We would also like to acknowledge Exxon Research and Developmental Laboratory for donation of the Pt/Al2O3 sample and Professor Zoltan Paa`l for the EUROPT-1 sample. R.M.R. would like to acknowledge the Ford Motor Company for financial support through a graduate fellowship administered by the Berkeley Catalysis Center.en
dc.publisherAmerican Chemical Societyen
dc.titleAdsorption and Co-adsorption of Ethylene and Carbon Monoxide on Silica-Supported Monodisperse Pt Nanoparticles; Volumetric Adsorption and Infrared Spectroscopy Studiesen
dc.typeArticle-
dc.identifier.doi10.1021/la702685a-
Appears in Collection
CH-Journal Papers(저널논문)

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0