Scalable Representation and Learning for 3D Object Recognition Using Shared Feature-Based View Clustering

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 284
  • Download : 4
In this paper, we present a new scalable 3D object representation and learning method to recognize many objects. Scalability is one of the important issues in object recognition to reduce memory and recognition time. The key idea of scalable representation is to combine a feature sharing concept with view clustering in part-based object representation (especially a CFCM: common frame constellation model). In this representation scheme, we also propose a fully automatic learning method: appearance-based automatic feature clustering and sequential construction of view-tuned CFCMs from labeled multi-views and multiobjects. We applied this learning scheme to 40 objects with 216 training views. Experimental results show the scalable learning results in almost constant recognition performance relative to the number of objects.
Springer Verlag
Issue Date

ACCV 2006

Appears in Collection
EE-Conference Papers(학술회의논문)


  • mendeley


rss_1.0 rss_2.0 atom_1.0