Accurate Camera Calibration Robust to Defocus using a Smartphone

Cited 27 time in webofscience Cited 0 time in scopus
  • Hit : 357
  • Download : 622
We propose a novel camera calibration method for defocused images using a smartphone under the assumption that the defocus blur is modeled as a convolution of a sharp image with a Gaussian point spread function (PSF). In contrast to existing calibration approaches which require wellfocused images, the proposed method achieves accurate camera calibration with severely defocused images. This robustness to defocus is due to the proposed set of unidirectional binary patterns, which simplifies 2D Gaussian deconvolution to a 1D Gaussian deconvolution problem with multiple observations. By capturing the set of patterns consecutively displayed on a smartphone, we formulate the feature extraction as a deconvolution problem to estimate feature point locations in sub-pixel accuracy and the blur kernel in each location. We also compensate the error in camera parameters due to refraction of the glass panel of the display device. We evaluate the performance of the proposed method on synthetic and real data. Even under severe defocus, our method shows accurate camera calibration result.
Publisher
IEEE Computer Society and the Computer Vision Foundation (CVF)
Issue Date
2015-12-13
Language
English
Citation

IEEE International Conference on Computer Vision (ICCV 2015)

URI
http://hdl.handle.net/10203/204138
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 27 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0