Optimum Linewidth of Spectrum-Sliced Incoherent Light Source Using a Gain-Saturated Semiconductor Optical Amplifier

Cited 2 time in webofscience Cited 2 time in scopus
  • Hit : 356
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHu, Qikaiko
dc.contributor.authorYu, Changyuanko
dc.contributor.authorKam, Pooi-Yuenko
dc.contributor.authorKim, Hoonko
dc.date.accessioned2016-04-15T03:01:19Z-
dc.date.available2016-04-15T03:01:19Z-
dc.date.created2015-10-02-
dc.date.created2015-10-02-
dc.date.issued2015-09-
dc.identifier.citationJOURNAL OF LIGHTWAVE TECHNOLOGY, v.33, no.17, pp.3744 - 3750-
dc.identifier.issn0733-8724-
dc.identifier.urihttp://hdl.handle.net/10203/203904-
dc.description.abstractWe investigate the optimum linewidth of the spect rum-sliced incoherent light (SSIL) source using a gain-saturated semiconductor optical amplifier (SOA) for the maximum capacity and longest transmission distance. For this purpose, we carry out experimental and simulation studies on the transmission performance of a 10-Gb/s on-off keying signal generated by using the SSIL source over a wide range of the SSIL linewidth. We find out that there are two windows of the linewidth for the highspeed operation of the SSIL source: ultra-narrow (i.e., linewidth << receiver bandwidth) and very wide (i.e., linewidth >> receiver bandwidth). However, when the linewidth of the SSIL source is very wide, the 10-Gb/s signal generated by using this SSIL suffers severely from fiber chromatic dispersion and optical filtering. The simulation results are confirmed by experimental data measured by using an ultranarrow fiber Fabry-Perot filter (bandwidth = 700 MHz) and a bandwidth-tunable optical filter (bandwidth = 20 similar to 53 GHz). Thus, we can conclude that the optimum linewidth of SSIL for capacity and transmission distance is ultranarrow. We also present a couple of drawbacks of the ultranarrow SSIL source, compared to the conventional wide-linewidth SSIL one, such as a large spectrum-slicing loss, a large SOA input power required for the suppression of excess intensity noise inherent in the incoherent light source, and the susceptibility to in-band crosstalk.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectNOISE-REDUCTION-
dc.subjectWDM SYSTEMS-
dc.subjectINTENSITY NOISE-
dc.subjectTRANSMISSION-
dc.subjectSOA-
dc.subjectSUPPRESSION-
dc.subjectPERFORMANCE-
dc.subjectPON-
dc.subjectOPTIMIZATION-
dc.subjectCROSSTALK-
dc.titleOptimum Linewidth of Spectrum-Sliced Incoherent Light Source Using a Gain-Saturated Semiconductor Optical Amplifier-
dc.typeArticle-
dc.identifier.wosid000360504000030-
dc.identifier.scopusid2-s2.0-84939449499-
dc.type.rimsART-
dc.citation.volume33-
dc.citation.issue17-
dc.citation.beginningpage3744-
dc.citation.endingpage3750-
dc.citation.publicationnameJOURNAL OF LIGHTWAVE TECHNOLOGY-
dc.identifier.doi10.1109/JLT.2015.2459724-
dc.contributor.localauthorKim, Hoon-
dc.contributor.nonIdAuthorHu, Qikai-
dc.contributor.nonIdAuthorYu, Changyuan-
dc.contributor.nonIdAuthorKam, Pooi-Yuen-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorIncoherent light-
dc.subject.keywordAuthorpassive optical networks-
dc.subject.keywordAuthorsemi-conductor optical amplifier (SOA)-
dc.subject.keywordAuthorspectrum slicing-
dc.subject.keywordAuthorwavelength division multiplexing (WDM)-
dc.subject.keywordPlusNOISE-REDUCTION-
dc.subject.keywordPlusWDM SYSTEMS-
dc.subject.keywordPlusINTENSITY NOISE-
dc.subject.keywordPlusTRANSMISSION-
dc.subject.keywordPlusSOA-
dc.subject.keywordPlusSUPPRESSION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusPON-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusCROSSTALK-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0