Graphene-Wrapped Anatase TiO2 Nanofibers as High-Rate and Long-Cycle-Life Anode Material for Sodium Ion Batteries

Cited 94 time in webofscience Cited 94 time in scopus
  • Hit : 264
  • Download : 353
DC FieldValueLanguage
dc.contributor.authorYeo, Yeolmaeko
dc.contributor.authorJung, Ji-Wonko
dc.contributor.authorPark, Kyusungko
dc.contributor.authorKim, Il-Dooko
dc.date.accessioned2016-04-15T02:59:42Z-
dc.date.available2016-04-15T02:59:42Z-
dc.date.created2015-10-06-
dc.date.created2015-10-06-
dc.date.created2015-10-06-
dc.date.issued2015-09-
dc.identifier.citationSCIENTIFIC REPORTS, v.5-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://hdl.handle.net/10203/203887-
dc.description.abstractAnatase TiO2 has been suggested as a potential sodium anode material, but the low electrical conductivity of TiO2 often limits the rate capability, resulting in poor electrochemical properties. To address this limitation, we propose graphene-wrapped anatase TiO2 nanofibers (rGO@TiO2 NFs) through an effective wrapping of reduced graphene oxide (rGO) sheets on electrospun TiO2 NFs. To provide strong electrostatic interaction between the graphene oxide (GO) sheets and the TiO2 NFs, poly(allylamine hydrochloride) (PAH) was used to induce a positively charged TiO2 surface by the immobilization of the -NH3+ group and to promote bonding with the negatively charged carboxylic acid (-COO-) and hydroxyl (-O-) groups on the GO. A sodium anode electrode using rGO@TiO2 NFs exhibited a significantly improved initial capacity of 217 mAh g(-1), high capacity retention (85% after 200 cycles at 0.2C), and a high average Coulombic efficiency (99.7% from the second cycle to the 200th cycle), even at a 5C rate, compared to those of pristine TiO2 NFs. The improved electrochemical performances stem from highly conductive properties of the reduced GO which is effectively anchored to the TiO2 NFs.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleGraphene-Wrapped Anatase TiO2 Nanofibers as High-Rate and Long-Cycle-Life Anode Material for Sodium Ion Batteries-
dc.typeArticle-
dc.identifier.wosid000360977000001-
dc.identifier.scopusid2-s2.0-84941366665-
dc.type.rimsART-
dc.citation.volume5-
dc.citation.publicationnameSCIENTIFIC REPORTS-
dc.identifier.doi10.1038/srep13862-
dc.contributor.localauthorKim, Il-Doo-
dc.contributor.nonIdAuthorYeo, Yeolmae-
dc.contributor.nonIdAuthorPark, Kyusung-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusFAST LITHIUM STORAGE-
dc.subject.keywordPlusNEGATIVE ELECTRODES-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusNANOCOMPOSITES-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordPlusMECHANISM-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 94 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0