Incorporation of sheet-forming effects in crash simulations using ideal forming theory and hybrid membrane and shell method

Cited 16 time in webofscience Cited 23 time in scopus
  • Hit : 250
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorRyou, Hansunko
dc.contributor.authorChung, Kwansooko
dc.contributor.authorYoon, Jeong Whanko
dc.contributor.authorHan, Chung Soukko
dc.contributor.authorYoun, Jae Ryounko
dc.contributor.authorKang, Tae Jinko
dc.date.accessioned2016-04-14T03:05:40Z-
dc.date.available2016-04-14T03:05:40Z-
dc.date.created2015-11-30-
dc.date.created2015-11-30-
dc.date.issued2005-02-
dc.identifier.citationJOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, v.127, no.1, pp.182 - 192-
dc.identifier.issn1087-1357-
dc.identifier.urihttp://hdl.handle.net/10203/203812-
dc.description.abstractIn order to achieve reliable but cost-effective crash simulations of stamped parts, sheet-forming process effects were incorporated in simulations using the ideal forming theory mixed with the three-dimensional hybrid membrane and shell method, while the subsequent crash simulations were carried out using a dynamic explicit finite element code. Example solutions performed for forming and crash simulations of I- and S-shaped rails verified that the proposed approach is cost effective without sacrificing accuracy. The method required a significantly small amount of additional computation time, less than 3% for the specific examples, to incorporate sheet-forming effects into crash simulations. As for the constitutive equation, the combined isotropic-kinematic hardening law and the nonquadratic anisotropic yield stress potential as well as its conjugate strain-rate potential were used to describe the anisotropy of AA6111-T4 aluminum alloy sheets.-
dc.languageEnglish-
dc.publisherASME-AMER SOC MECHANICAL ENG-
dc.subjectMINIMUM PLASTIC WORK-
dc.subjectDEFORMATION-
dc.subjectSPRINGBACK-
dc.subjectMETALS-
dc.titleIncorporation of sheet-forming effects in crash simulations using ideal forming theory and hybrid membrane and shell method-
dc.typeArticle-
dc.identifier.wosid000228404400019-
dc.identifier.scopusid2-s2.0-17544368437-
dc.type.rimsART-
dc.citation.volume127-
dc.citation.issue1-
dc.citation.beginningpage182-
dc.citation.endingpage192-
dc.citation.publicationnameJOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME-
dc.identifier.doi10.1115/1.1830050-
dc.contributor.localauthorYoon, Jeong Whan-
dc.contributor.nonIdAuthorRyou, Hansun-
dc.contributor.nonIdAuthorChung, Kwansoo-
dc.contributor.nonIdAuthorHan, Chung Souk-
dc.contributor.nonIdAuthorYoun, Jae Ryoun-
dc.contributor.nonIdAuthorKang, Tae Jin-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorcrashworthiness-
dc.subject.keywordAuthorideal forming-
dc.subject.keywordAuthorhybrid method-
dc.subject.keywordAuthorisotropic-kinematic hardening-
dc.subject.keywordAuthornonquadratic anisotropic yield potential-
dc.subject.keywordAuthoryield potential and strain-rate-
dc.subject.keywordPlusMINIMUM PLASTIC WORK-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusSPRINGBACK-
dc.subject.keywordPlusMETALS-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 16 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0