Factors that affect Li mobility in layered lithium transition metal oxides

Cited 456 time in webofscience Cited 395 time in scopus
  • Hit : 336
  • Download : 1456
The diffusion constant of Li in electrode materials is a key aspect of the rate capability of rechargeable Li batteries. The factors that affect Li mobility in layered lithium transition metal oxides are systematically studied in this paper by means of first-principles calculations. In close packed oxides octahedral ions diffuse by migrating through intermediate tetrahedral sites. Our results indicate that the activation barrier for Li hopping is strongly affected by the size of the tetrahedral site and the electrostatic interaction between Li+ in that site and the cation in the octahedron that shares a face with it. The size of the tetrahedral site is determined by the c-lattice parameter which has a remarkably strong effect on the activation barrier for Li migration. The effect of other factors such as cation mixing and doping with nontransition metal ions can be interpreted quantitatively in terms of the size and electrostatic effect. A general strategy to design high rate electrode materials is discussed.
Publisher
AMERICAN PHYSICAL SOC
Issue Date
2006-09
Language
English
Article Type
Article
Keywords

STRUCTURE REFINEMENT; ION BATTERIES; AB-INITIO; DIFFUSION; CATHODE; LIXCOO2; LICOO2; ELECTRODES; STABILITY; INSERTION

Citation

PHYSICAL REVIEW B, v.74, no.9

ISSN
1098-0121
DOI
10.1103/PhysRevB.74.094105
URI
http://hdl.handle.net/10203/20376
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 456 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0