Dioxygen activation in methane monooxygenase: A theoretical study

Cited 118 time in webofscience Cited 0 time in scopus
  • Hit : 327
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorGherman, BFko
dc.contributor.authorBaik, Mu-Hyunko
dc.contributor.authorLippard, SJko
dc.contributor.authorFriesner, RAko
dc.date.accessioned2016-04-12T07:46:27Z-
dc.date.available2016-04-12T07:46:27Z-
dc.date.created2015-09-11-
dc.date.created2015-09-11-
dc.date.issued2004-03-
dc.identifier.citationJOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.126, no.9, pp.2978 - 2990-
dc.identifier.issn0002-7863-
dc.identifier.urihttp://hdl.handle.net/10203/203360-
dc.description.abstractUsing broken-symmetry unrestricted Density Functional Theory, the mechanism of enzymatic dioxygen activation by the hydroxylase component of soluble methane monooxygenase (MMOH) is determined to atomic detail. After a thorough examination of mechanistic alternatives, an optimal pathway was identified. The diiron(II) state H-red reacts with dioxygen to give a ferromagnetically coupled diiron(II,III) H-superoxo structure, which undergoes intersystem crossing to the antiferromagnetic surface and affords H-peroxo, a symmetric diiron(III) unit with a nonplanar mu-eta(2):eta(2)-O2- binding mode. Homolytic cleavage of the O-O bond yields the catalytically competent intermediate 0, which has a di (mu-oxo)diiron(IV) core. A carboxylate shift involving Glu243 is essential to the formation of the symmetric Hperoxo and Q structures. Both thermodynamic and kinetic features agree well with experimental data, and computed spin-exchange coupling constants are in accord with spectroscopic values. Evidence is presented for pH-independent decay of H-red and H-peroxo. Key electron-transfer steps that occur in the course of generating Q from H-red are also detailed and interpreted. In contrast to prior theoretical studies, a requisite large model has been employed, electron spins and couplings have been treated in a quantitative manner, potential energy surfaces have been extensively explored, and quantitative total energies have been determined along the reaction pathway.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectMETHYLOCOCCUS-CAPSULATUS BATH-
dc.subjectMETHYLOSINUS-TRICHOSPORIUM OB3B-
dc.subjectEFFECTIVE CORE POTENTIALS-
dc.subjectNONHEME DIIRON ENZYMES-
dc.subjectDINUCLEAR IRON CENTERS-
dc.subjectO BOND-CLEAVAGE-
dc.subjectC-H BOND-
dc.subjectHYDROXYLASE COMPONENT-
dc.subjectINTERMEDIATE-Q-
dc.subjectMOLECULAR CALCULATIONS-
dc.titleDioxygen activation in methane monooxygenase: A theoretical study-
dc.typeArticle-
dc.identifier.wosid000220038800062-
dc.identifier.scopusid2-s2.0-1542377662-
dc.type.rimsART-
dc.citation.volume126-
dc.citation.issue9-
dc.citation.beginningpage2978-
dc.citation.endingpage2990-
dc.citation.publicationnameJOURNAL OF THE AMERICAN CHEMICAL SOCIETY-
dc.identifier.doi10.1021/ja03506+-
dc.contributor.localauthorBaik, Mu-Hyun-
dc.contributor.nonIdAuthorGherman, BF-
dc.contributor.nonIdAuthorLippard, SJ-
dc.contributor.nonIdAuthorFriesner, RA-
dc.type.journalArticleArticle-
dc.subject.keywordPlusMETHYLOCOCCUS-CAPSULATUS BATH-
dc.subject.keywordPlusMETHYLOSINUS-TRICHOSPORIUM OB3B-
dc.subject.keywordPlusEFFECTIVE CORE POTENTIALS-
dc.subject.keywordPlusNONHEME DIIRON ENZYMES-
dc.subject.keywordPlusDINUCLEAR IRON CENTERS-
dc.subject.keywordPlusO BOND-CLEAVAGE-
dc.subject.keywordPlusC-H BOND-
dc.subject.keywordPlusHYDROXYLASE COMPONENT-
dc.subject.keywordPlusINTERMEDIATE-Q-
dc.subject.keywordPlusMOLECULAR CALCULATIONS-
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 118 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0