Redox Properties of Tanaka's Water Oxidation Catalyst: Redox Noninnocent Ligands Dominate the Electronic Structure and Reactivity

Cited 32 time in webofscience Cited 32 time in scopus
  • Hit : 232
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorGhosh, Soumyako
dc.contributor.authorBaik, Mu-Hyunko
dc.date.accessioned2016-04-12T07:36:42Z-
dc.date.available2016-04-12T07:36:42Z-
dc.date.created2015-09-11-
dc.date.created2015-09-11-
dc.date.issued2011-07-
dc.identifier.citationINORGANIC CHEMISTRY, v.50, no.13, pp.5946 - 5957-
dc.identifier.issn0020-1669-
dc.identifier.urihttp://hdl.handle.net/10203/203309-
dc.description.abstract[Ru(2)(OH)(2)(3,6-(t)Bu(2)Q)(2)(btpyan)](2+) ((t)Bu(2)Q, 3,6-di-tert-butyl-1,2-benzoquinone; btpyan, 1,8-bis(2,2':6',2 ''-terpyridyl)-anthracene) is one of a handful of structurally well-defined homogeneous catalysts that can electrocatalytically oxidize water at room temperature. Unfortunately, the exact composition and the chemical properties of the redox intermediates leading to the catalytically competent species remains poorly resolved. On the basis of the UV-vis spectra the catalyst was previously speculated to lose two protons spontaneously to form an intermediate containing the key O-O bond in water. We evaluated this mechanistic scenario computationally and found that the associated pK(a) values are in the range of 21, much too high to justify spontaneous deprotonation under experimental conditions of pH = 4. In later work, the O-O bond formation was speculated to occur after removal of two protons and two electrons. Extensive exploration of the various oxidation and protonation states that the diruthenium complex may access during catalyst activation reveals surprisingly complex electronic structure patterns in several redox intermediates: the quinone and tpy ligands become redox noninnocent, i.e., they participate actively in the electron transfer processes by temporarily storing redox equivalents. On the basis of this new insight into the electronic structure we propose a novel alternative explanation of the spectroscopic observations reported previously and characterize the electronic structure of the key intermediates in detail. Finally, the redox potential for the first two-electron oxidation is evaluated based on our proposed intermediates and predicted to be 0.411 V, which compares well with the experimentally observed broad two-electron wave at similar to 0.32 V.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectSOLVATION FREE-ENERGIES-
dc.subjectO-O BOND-
dc.subjectTRANSITION-METAL-COMPLEXES-
dc.subjectEFFECTIVE CORE POTENTIALS-
dc.subjectNON-INNOCENT LIGAND-
dc.subjectMOLECULAR CALCULATIONS-
dc.subjectRUTHENIUM COMPLEX-
dc.subjectDENSITY-
dc.subjectHYDROGEN-
dc.subjectDIOXYGEN-
dc.titleRedox Properties of Tanaka's Water Oxidation Catalyst: Redox Noninnocent Ligands Dominate the Electronic Structure and Reactivity-
dc.typeArticle-
dc.identifier.wosid000292010000015-
dc.identifier.scopusid2-s2.0-79959757813-
dc.type.rimsART-
dc.citation.volume50-
dc.citation.issue13-
dc.citation.beginningpage5946-
dc.citation.endingpage5957-
dc.citation.publicationnameINORGANIC CHEMISTRY-
dc.identifier.doi10.1021/ic102427g-
dc.contributor.localauthorBaik, Mu-Hyun-
dc.contributor.nonIdAuthorGhosh, Soumya-
dc.type.journalArticleArticle-
dc.subject.keywordPlusSOLVATION FREE-ENERGIES-
dc.subject.keywordPlusO-O BOND-
dc.subject.keywordPlusTRANSITION-METAL-COMPLEXES-
dc.subject.keywordPlusEFFECTIVE CORE POTENTIALS-
dc.subject.keywordPlusNON-INNOCENT LIGAND-
dc.subject.keywordPlusMOLECULAR CALCULATIONS-
dc.subject.keywordPlusRUTHENIUM COMPLEX-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordPlusHYDROGEN-
dc.subject.keywordPlusDIOXYGEN-
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 32 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0