Laser Ultrasonic System for Surface Crack Visualization in Dissimilar Welds of Control Rod Drive Mechanism Assembly of Nuclear Power Plant

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 142
  • Download : 189
In this paper, we propose a J-groove dissimilar weld crack visualization system based on ultrasonic propagation imaging (UPI) technology. A full-scale control rod drive mechanism (CRDM) assembly specimen was fabricated to verify the proposed system. An ultrasonic sensor was contacted at one point of the inner surface of the reactor vessel head part of the CRDM assembly. Q-switched laser beams were scanned to generate ultrasonic waves around the weld bead. The localization and sizing of the crack were possible by ultrasonic wave propagation imaging. Furthermore, ultrasonic spectral imaging unveiled frequency components of damage-induced waves, while wavelet-transformed ultrasonic propagation imaging enhanced damage visibility by generating a wave propagation video focused on the frequency component of the damage-induced waves. Dual-directional anomalous wave propagation imaging with adjacent wave subtraction was also developed to enhance the crack visibility regardless of crack orientation and wave propagation direction. In conclusion, the full-scale specimen test demonstrated that the multiple damage visualization tools are very effective in the visualization of J-groove dissimilar weld cracks.
Publisher
IOS PRESS
Issue Date
2014-03
Language
English
Article Type
Article
Citation

SHOCK AND VIBRATION

ISSN
1070-9622
DOI
10.1155/2014/296426
URI
http://hdl.handle.net/10203/202812
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0