Incipient crack detection in a composite wind turbine rotor blade

Cited 18 time in webofscience Cited 20 time in scopus
  • Hit : 243
  • Download : 0
This article presents a performance optimization approach to incipient crack detection in a wind turbine rotor blade that underwent fatigue loading to failure. The objective of this article is to determine an optimal demarcation date, which is required to properly normalize active-sensing data collected and processed using disparate methods for the purpose of damage detection performance comparison. We propose that maximizing average damage detection performance with respect to a demarcation date would provide both an estimate of the true incipient damage onset date and the proper normalization enabling comparison of detection performance among the otherwise disparate data sets. This work focuses on the use of ultrasonic guided waves to detect incipient damage prior to the surfacing of a visible, catastrophic crack. The blade was instrumented with piezoelectric transducers, which were used in a pitch-catch mode over a range of excitation frequencies. With respect to specific excitation frequencies and transmission paths, higher excitation frequencies provided consistent detection results for paths along the rotor blade's carbon fiber spar cap, but performance fell off with increasing excitation frequency for paths not along the spar cap. Lower excitation frequencies provided consistent detection performance among all sensor paths.
Publisher
SAGE PUBLICATIONS LTD
Issue Date
2014-03
Language
English
Article Type
Article; Proceedings Paper
Citation

JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, v.25, no.5, pp.613 - 620

ISSN
1045-389X
DOI
10.1177/1045389X13510788
URI
http://hdl.handle.net/10203/202805
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 18 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0