Control of Engine-Starts for Optimal Drivability of Parallel Hybrid Electric Vehicles

Cited 38 time in webofscience Cited 59 time in scopus
  • Hit : 779
  • Download : 0
The pretransmission parallel hybrid electric vehicle (HEV) with a single electric motor requires relatively little changes from existing powertrain configurations. This configuration, however, has a challenging drivability issue during engine-starts because the electric motor must simultaneously provide the demanded propulsion torque and start the engine. Depending on the propulsion power level, such engine-start process may require a trade-off between drivability and quick start. The goal of this study is to find theoretical performance limits and corresponding optimal control strategies that achieve the balance between these two conflicting goals. We first develop a simplified parallel HEV powertrain model to predict the engine, clutch, and vehicle dynamics. Assuming that the clutch torque can be accurately estimated and perfectly cancelled, an optimal engine-start control problem is formulated to minimize engine-start time while supplying the driver demanded torque. This nonlinear constrained optimal control problem is solved both analytically and numerically. For some special cases, the optimization problem can be solved analytically to obtain a closed-form solution. For the numerical method, dynamic programming (DP) is used, and both analytical and numerical solutions show that selecting a proper level of constant clutch pressure is the key to achieve near-optimal drivability performance. Furthermore, the DP control policy is found to be time-invariant, and thus can be implemented in the form of a full state feedback controller.
Publisher
ASME
Issue Date
2013-03
Language
English
Article Type
Article
Citation

JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, v.135, no.2

ISSN
0022-0434
DOI
10.1115/1.4023067
URI
http://hdl.handle.net/10203/201627
Appears in Collection
GT-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 38 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0