Exploiting Application/System-Dependent Ambient Temperature for Accurate Microarchitectural Simulation

Cited 13 time in webofscience Cited 13 time in scopus
  • Hit : 357
  • Download : 0
In the early design stage of processors, Dynamic Thermal Management (DTM) schemes should be evaluated to avoid excessively high temperature, while minimizing performance overhead. In this paper, we show that conventional thermal simulations using the fixed ambient temperature may lead to the wrong conclusions in terms of temperature, performance, reliability, and leakage power. Though ambient temperature converges to a steady-state value after hundreds of seconds when we run SPEC CPU2000 benchmark suite, the steady-state ambient temperature is significantly different depending on applications and system configuration. To overcome inaccuracy of conventional thermal simulations, we propose that microarchitectural thermal simulations should exploit application/system-dependent ambient temperature. Our evaluation results reveal that performance, thermal behavior, reliability, and leakage power of the same DTM scheme are different when we use the application/system-dependent ambient temperature instead of the fixed ambient temperature. For accurate simulation results, future microarchitectural thermal researchers are expected to evaluate their proposed DTM schemes based on application/system-dependent ambient temperature.
Publisher
IEEE COMPUTER SOC
Issue Date
2013-04
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON COMPUTERS, v.62, no.4, pp.705 - 715

ISSN
0018-9340
DOI
10.1109/TC.2012.24
URI
http://hdl.handle.net/10203/201361
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 13 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0