Material nonlinear analysis of RC shear walls subject to monotonic loadings

Cited 21 time in webofscience Cited 26 time in scopus
  • Hit : 462
  • Download : 172
This paper proposes an analytical model to simulate the nonlinear behavior of reinforced concrete (RC) structures subject to monotonic in-plane shear and normal stresses. Based on the force equilibrium, compatibility conditions, and bond stress-slip relationship between the reinforcement and the surrounding concrete, a criterion to consider the tension-stiffening effect is proposed using the concept of average stresses and strains. The material behavior of concrete is described by an orthotropic constitutive relation, focusing on the tension-compression region with tension-stiffening and compression softening effects defining the equivalent uniaxial stress-strain relation in the axes of orthotropy. The behavior of cracked concrete is described by a system of orthogonal cracks, which follows the principal strain directions and rotates according to the loading history. Finally, correlation studies between analytical results and available experimental data are conducted to assess the validity of the proposed models. (C) 2004 Elsevier Ltd. All rights reserved.
Publisher
ELSEVIER SCI LTD
Issue Date
2004-09
Language
English
Article Type
Article
Keywords

ARC-LENGTH METHOD; REINFORCED-CONCRETE; ELEMENTS; BEHAVIOR; CRACKING

Citation

ENGINEERING STRUCTURES, v.26, no.11, pp.1517 - 1533

ISSN
0141-0296
DOI
10.1016/j.engstruct.2004.05.013
URI
http://hdl.handle.net/10203/19904
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 21 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0