An evaluation of passage-based text categorization

Cited 9 time in webofscience Cited 0 time in scopus
  • Hit : 810
  • Download : 70
Researches in text categorization have been confined to whole-document-level classification, probably due to lack of full-text test collections. However, full-length documents available today in large quantities pose renewed interests in text classification. A document is usually written in an organized structure to present its main topic(s). This structure can be expressed as a sequence of subtopic text blocks, or passages. In order to reflect the subtopic structure of a document, we propose a new passage-level or passage-based text categorization model, which segments a test document into several passages, assigns categories to each passage, and merges the passage categories to the document categories. Compared with traditional document-level categorization, two additional steps, passage splitting and category merging, are required in this model. Using four subsets of the Reuters text categorization test collection and a full-text test collection of which documents are varying from tens of kilobytes to hundreds, we evaluate the proposed model, especially the effectiveness of various passage types and the importance of passage location in category merging. Our results show simple windows are best for all test collections tested in these experiments. We also found that passages have different degrees of contribution to the main topic(s), depending on their location in the test document.
Publisher
SPRINGER
Issue Date
2004-07
Language
English
Article Type
Article
Keywords

RANKING

Citation

JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, v.23, no.1, pp.47 - 65

ISSN
0925-9902
DOI
10.1023/B:JIIS.0000029670.53363.d0
URI
http://hdl.handle.net/10203/1983
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0