Hydrogel incorporated microfluidic device for in vitro culture and dynamic observation of human intestinal epithelial cells = 인체 장상피세포의 체외배양 및 실시간 관찰용 하이드로젤 기반 미세유체소자

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 354
  • Download : 0
To complement limitations of the traditional methods for intestinal microbiota researches, a biomimetic in vitro model is demanded. Microfluidic models have been developed to meet such demand, but even they had to be sliced into thin sectional samples in order to observe microbiota environment such as epithelial monolayer, mucus and microorganisms. This study aims to develop a thin-section, microfluidic model allowing dynamic, simultaneous observation of microbiota environment. 20 μm thin collagen scaffold was constructed inside the microfluidic device as a barrier separating apical from basal flow and extracellular matrix (ECM) for epithelial culture. The collagen scaffold successfully allowed adherence of epithelial culture consisted of HT-29 intestinal cell line. Seeding density and cell incubation time suitable for covering the collagen scaffold with monolayer culture of epithelial cells were determined. HT-29 cells were found to secrete more mucus, which provides microbiota niche, when adhered to collagen. By quantifying mucus secretion of the HT-29 cells cultured inside the proposed device, the increased mucus secretion was found to be more dependent on cell-ECM adhesion than cell-cell adhesion. Dynamic, simultaneous observation of the collagen scaffold, the cell culture and green fluorescent protein (GFP)-expressing bacteria on single focal plane was demonstrated using the microfluidic device. During three days of cultivation, HT-29 cells displayed excessive proliferation, requiring inhibition of their tumorous phenotype. The proposed device offers a capability for live imaging of intestinal microbiota and its surroundings. Findings of this thesis study will be implemented to improve the device as truly biomimetic modeling of human intestinal microbiota.
Park, Je-Kyunresearcher박제균
한국과학기술원 : 바이오및뇌공학과,
Issue Date
566285/325007  / 020114446

학위논문(석사) - 한국과학기술원 : 바이오및뇌공학과, 2013.8, [ viii, 45 p. ]


Microfluidics; 하이드로젤; 체외배양; 실시간 관찰; 장상피세포; 미세유체; Epithelial Cell; Dynamic Observation; In Vitro; Hydrogel

Appears in Collection
Files in This Item
There are no files associated with this item.


  • mendeley


rss_1.0 rss_2.0 atom_1.0