Noise-Robust Detection of Symmetric Axes by Self-Correcting Artificial Neural Network

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 487
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChang, Won-Ilko
dc.contributor.authorSong, Hyun Ahko
dc.contributor.authorOh, Sang-Hoonko
dc.contributor.authorLee, Soo-Youngko
dc.date.accessioned2015-04-15T02:07:13Z-
dc.date.available2015-04-15T02:07:13Z-
dc.date.created2015-04-13-
dc.date.created2015-04-13-
dc.date.created2015-04-13-
dc.date.created2015-04-13-
dc.date.created2015-04-13-
dc.date.issued2015-04-
dc.identifier.citationNEURAL PROCESSING LETTERS, v.41, no.2, pp.179 - 189-
dc.identifier.issn1370-4621-
dc.identifier.urihttp://hdl.handle.net/10203/196077-
dc.description.abstractPerception of symmetric image patterns is one of the important stages in visual information processing. However, local interference of the input image disturbs the detection of symmetry in artificial neural network based models. In this paper, we propose a noise-robust neural network model that can correct asymmetric corruptions and returns clear symmetry axes. For efficient detection of bilateral symmetry as well as asymmetry correction, our network adopts directional blurring filters. The filter responses are fed to oscillatory neurons for line extraction, which serializes the activation of multiple symmetry axes. Given an activated symmetry axis, the network estimates the difference of counterparts to generate a masking filter that covers the asymmetric parts. The network reconstructs the ideal mirror-symmetric image with complete symmetry axes by self-correction of corruptions. Through simulations on corrupted images, we verify that our network is superior to Fukushima's symmetry detection network. Our network successfully presents biologically plausible and robust symmetry perception mechanism.-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.titleNoise-Robust Detection of Symmetric Axes by Self-Correcting Artificial Neural Network-
dc.typeArticle-
dc.identifier.wosid000351176000004-
dc.identifier.scopusid2-s2.0-84924851494-
dc.type.rimsART-
dc.citation.volume41-
dc.citation.issue2-
dc.citation.beginningpage179-
dc.citation.endingpage189-
dc.citation.publicationnameNEURAL PROCESSING LETTERS-
dc.identifier.doi10.1007/s11063-013-9319-4-
dc.contributor.localauthorLee, Soo-Young-
dc.contributor.nonIdAuthorOh, Sang-Hoon-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorSymmetry axis detection-
dc.subject.keywordAuthorAsymmetry correction-
dc.subject.keywordAuthorOscillator network-
dc.subject.keywordAuthorDirectional blurring filter-
dc.subject.keywordPlusPERCEPTION-
dc.subject.keywordPlusFEATURES-
dc.subject.keywordPlusSCALE-
dc.subject.keywordPlusMODEL-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0