Stability of hypersurface sections of quadric threefolds

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 409
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorByun, Sang Hoko
dc.contributor.authorLee, Yongnamko
dc.date.accessioned2015-04-08T08:08:06Z-
dc.date.available2015-04-08T08:08:06Z-
dc.date.created2015-04-06-
dc.date.created2015-04-06-
dc.date.issued2015-03-
dc.identifier.citationSCIENCE CHINA-MATHEMATICS, v.58, no.3, pp.479 - 486-
dc.identifier.issn1674-7283-
dc.identifier.urihttp://hdl.handle.net/10203/195981-
dc.description.abstractLet S be a complete intersection of a smooth quadric 3-fold Q and a hypersurface of degree d in P-4. We analyze GIT stability of S with respect to the natural G = SO(5, C)-action. We prove that if d >= 4 and S has at worst semi-log canonical singularities then S is G-stable. Also, we prove that if d >= 3 and S has at worst semi-log canonical singularities then S is G-semistable.-
dc.languageEnglish-
dc.publisherSCIENCE PRESS-
dc.subjectHILBERT-STABILITY-
dc.subjectDEFORMATIONS-
dc.titleStability of hypersurface sections of quadric threefolds-
dc.typeArticle-
dc.identifier.wosid000351167200003-
dc.identifier.scopusid2-s2.0-84925488814-
dc.type.rimsART-
dc.citation.volume58-
dc.citation.issue3-
dc.citation.beginningpage479-
dc.citation.endingpage486-
dc.citation.publicationnameSCIENCE CHINA-MATHEMATICS-
dc.identifier.doi10.1007/s11425-014-4918-8-
dc.contributor.localauthorLee, Yongnam-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorquadric threefold-
dc.subject.keywordAuthorhypersurface section-
dc.subject.keywordAuthorstability-
dc.subject.keywordAuthorgeometric invariant theory-
dc.subject.keywordPlusHILBERT-STABILITY-
dc.subject.keywordPlusDEFORMATIONS-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0