Evaluation of directly wind-coherent near-inertial surface currents off Oregon using a statistical parameterization and analytical and numerical models

Cited 18 time in webofscience Cited 18 time in scopus
  • Hit : 816
  • Download : 0
Directly wind-coherent near-inertial surface currents off the Oregon coast are investigated with a statistical parameterization of observations and outputs of a regional numerical ocean model and three one-dimensional analytical models including the slab layer, Ekman, and near-surface averaged Ekman models. The transfer functions and response functions, statistically estimated from observed wind stress at NDBC buoys and surface currents derived from shored-based high-frequency radars, enable us to isolate the directly wind-forced near-inertial surface currents. Concurrent observations of the wind and currents are crucial to evaluate the directly wind-forced currents. Thus, the wind stress and surface current fields obtained from a regional ocean model, which simulates variability of the wind and surface currents on scales comparable to those in observations, are analyzed with the same statistical parameterization to derive the point-by-point transfer functions and response functions. Model and data comparisons show that the regional ocean model describes near-inertial variability of surface currents qualitatively and quantitatively correctly. The estimated response functions exhibit decay time scales in a range of 3-5 days, and about 40% of the near-inertial motions are explained by local wind stress. Among the one-dimensional analytical models, the near-surface averaged Ekman model explains the statistically derived wind-current relationship better than other analytical models.
Publisher
AMER GEOPHYSICAL UNION
Issue Date
2014-10
Language
English
Article Type
Article
Citation

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, v.119, no.10, pp.6631 - 6654

ISSN
0148-0227
DOI
10.1002/2014JC010115
URI
http://hdl.handle.net/10203/195851
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 18 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0