Tomo-PIV measurement of flow around an arbitrarily moving body with surface reconstruction

Cited 1 time in webofscience Cited 4 time in scopus
  • Hit : 270
  • Download : 0
A three-dimensional surface of an arbitrarily moving body in a flow field was reconstructed using the DAISY descriptor and epipolar geometry constraints. The surface shape of a moving body was reconstructed with tomographic PIV flow measurement. Experimental images were captured using the tomographic PIV system, which consisted of four high-speed cameras and a laser. The originally captured images, which contained the shape of the arbitrary moving body and the tracer particles, were separated into the particle and surface images using a Gaussian smoothing filter. The weak contrast of the surface images was enhanced using a local histogram equalization method. The histogram-equalized surface images were used to reconstruct the surface shape of the moving body. The surface reconstruction method required a sufficiently detailed surface pattern to obtain the intensity gradient profile of the local descriptor. The separated particle images were used to reconstruct the particle volume intensity via tomographic reconstruction approaches. Voxels behind the reconstructed body surface were neglected during the tomographic reconstruction and velocity calculation. The three-dimensional three-component flow vectors were calculated based on the cross-correlation functions between the reconstructed particle volumes. Three-dimensional experiments that modeled the flows around a flapping flag, a rotating cylinder, and a flapping robot fish tail were conducted to validate the present technique.
Publisher
SPRINGER
Issue Date
2015-02
Language
English
Article Type
Article
Keywords

PARTICLE-IMAGE-VELOCIMETRY; FLUID-STRUCTURE INTERACTION; TRIANGULATION; SYSTEM; DPIV

Citation

EXPERIMENTS IN FLUIDS, v.56, no.2

ISSN
0723-4864
DOI
10.1007/s00348-015-1902-1
URI
http://hdl.handle.net/10203/195801
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0