Semiempirical Thrust Model of Dielectric Barrier Plasma Actuator for Flow Control

Cited 18 time in webofscience Cited 9 time in scopus
  • Hit : 316
  • Download : 0
Asymmetric dielectric barrier discharge plasma generating a wall-bounded jet without mechanical moving parts was studied as a flow control device. A reliable model providing thrust value of the plasma actuator is difficult to develop without incurring a heavy calculation cost attributable to its unsteady characteristic and asymmetric electric field distribution. In this paper, a new semiempirical thrust prediction model was developed based on the one-dimensional electrohydrodynamic effect. It is implemented in a computational fluid dynamics solver as a body force term. We determined that the thrust of the plasma actuator is proportional to the energy consumed in the actuator, which is regarded as a capacitor in the alternating current (AC) circuit. An analytic estimation of the capacitance of the actuator is performed, and the sensitive design parameters dielectric constant, thickness and the upper electrode thickness are considered in the capacitance value. The thrust value from the model is inserted as a body force term in a Navier-Stokes equation solver and the body-force region is specified by the extent of the region of the discharged plasma. Grid dependence of the model is verified and the velocity profile changed by the actuator is compared with previous reference experiment data to validate it. Thus, the authors conclude that the developed model can provide the proper thrust value and a two-dimensional velocity profile without incurring a heavy calculation cost.
Publisher
ASCE-AMER SOC CIVIL ENGINEERS
Issue Date
2015-01
Language
English
Article Type
Article
Keywords

DISCHARGE PLASMA

Citation

JOURNAL OF AEROSPACE ENGINEERING, v.28, no.1

ISSN
0893-1321
DOI
10.1061/(ASCE)AS.1943-5525.0000353
URI
http://hdl.handle.net/10203/195293
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 18 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0