High performance nanosheet-like silicoaluminophosphate molecular sieves: synthesis, 3D EDT structural analysis and MTO catalytic studies

Cited 93 time in webofscience Cited 84 time in scopus
  • Hit : 896
  • Download : 0
Nanosheet-like silicoaluminophosphate (SAPO) molecular sieves SAPO-34 (CHA-type) and SAPO-18 (AEI-type) with different silicon contents were synthesized under hydrothermal conditions by using tetraethylammonium hydroxide as the template. Three-dimensional electron diffraction tomography (3D EDT) technique was applied for ab initio structure solutions. Electron microscopy observations confirmed the existence of defects, i.e., intergrowth of CHA- and AEI-type frameworks caused by the different stacking manners of double 6-ring layers, but the layers were highly coherent along c direction. Compositions, acidities, chemical environments, and texture properties of all the samples were characterized by ICP, EDS, NH3-TPD, MAS NMR, and N-2 adsorption-desorption measurements. The catalytic performances of methanol-to-olefin (MTO) reactions over nano SAPO catalysts with different silicon contents were systematically studied. All of these catalysts showed excellent catalytic activity, among which SAPO-34 showed superior catalytic performance compared to SAPO-18. DFT calculations were utilized to study the different catalytic performance of CHA and AEI. Significantly to date, SAPO-34 with the lowest silicon content exhibited the longest catalyst lifetime and the lowest coking rate in the MTO reaction than any of the reported catalysts, tested under similar conditions. The straight 8-ring pore channel along the c direction provided the optimum diffusion pathway as well as the shortest diffusion length for reactant and generated olefins, thus significantly reduced the coking rate. This work demonstrates that a 3D EDT approach combined with TEM and EDS analysis from a single nanocrystal can provide a clear crystal structure, crystal orientation and compositional information of nanocrystals, which are useful for the better understanding of the catalytic performance of nanosized crystalline catalysts.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2014-11
Language
English
Article Type
Article
Keywords

METHANOL-TO-OLEFIN; STATE NMR-SPECTROSCOPY; BRONSTED ACID SITES; ZEOLITE STRUCTURES; SILICON INCORPORATION; SAPO-34 CATALYSTS; CONVERSION; DEACTIVATION; HYDROCARBONS; SELECTIVITY

Citation

JOURNAL OF MATERIALS CHEMISTRY A, v.2, no.42, pp.17828 - 17839

ISSN
2050-7488
DOI
10.1039/c4ta03419h
URI
http://hdl.handle.net/10203/194716
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 93 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0