개인화된 상품추천을 위한 협동적 필터링에서의 데이터 선정과 추천 성과간의 관계

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 479
  • Download : 320
전자상거래와 고객관계관리에서 고객의 개인화를 위해 사용되는 협동적 필터링 방안은 고객이 상품에 대한 표시한 선호도에 기반을 두어 선호도가 유사한 사용자를 찾고, 유사한 사용자의 선호도를 활용하여 추천할 상품을 선정하는 방안이다. 고객간의 유사도 계산과 상품에 대한 선호도 계산을 위한 다양한 방안들의 계산식에 대해서는 명확하게 정의되어 있으나, 이에 활용되는 데이터의 선정에 대해서는 명확한 규정이나 가이드라인이 존재하지 않는다. 즉, 몇 번 이상의 선호도를 표시한 사용자를 대상으로 추천을 수행할 것인지, 혹은 몇 번 이상 선호도가 표시된 상품을 추천에 활용할 것인지와 같은 데이터 선정에 활용되는 계수와 협동적 필터링의 추천 성과간의 관계에 대한 연구는 아직 부족하다. 본 연구에서는 협동적 필터링의 연구에 많이 활용되는 EachMovie 데이터를 가지고 협동적 필터링의 계수와 추천 성과간의 관계에 대해 실험적으로 연구하였다. 첫번째는 몇 번 이상 선호도를 표시한 사용자를 협동적 필터링에 활용하는 것이 추천 성과를 높일 수 있는지에 대해 연구하였으며, 두 번째는 몇 번 이상 선호도가 표시된 상품을 고객에게 추천하는 것이 협동적 필터링의 추천 성과를 높일 수 있는가에 대한 연구를 수행하였다. 계수와 추천 성과간의 관계에 대한 두 가지 실험에서 선호도 표시의 한계가치(marginal value)가 점진적으로 감소하는 것을 볼 수 있었다. 본 연구의 결과는 협동적 필터링의 수행을 위한 효과적인 데이터의 선정에 도움을 줄 수 있을 것이다.
Publisher
한국경영과학회
Issue Date
2004-02
Language
KOR
Citation

한국경영과학회 학술대회, pp.338 - 341

URI
http://hdl.handle.net/10203/19422
Appears in Collection
KGSM-Conference Papers(학술회의논문)
Files in This Item
2004-114.pdf(629.96 kB)Download

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0