Determining the Control Circuitry of Redox Metabolism at the Genome-Scale

Cited 51 time in webofscience Cited 45 time in scopus
  • Hit : 345
  • Download : 163
Determining how facultative anaerobic organisms sense and direct cellular responses to electron acceptor availability has been a subject of intense study. However, even in the model organism Escherichia coli, established mechanisms only explain a small fraction of the hundreds of genes that are regulated during electron acceptor shifts. Here we propose a qualitative model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs), ArcA and Fnr of E. coli, sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic, catabolic, and energy generation pathways. We first fill gaps in our knowledge of this transcriptional regulatory network by carrying out ChIP-chip and gene expression experiments to identify 463 regulatory events. We then interfaced this reconstructed regulatory network with a highly curated genome-scale metabolic model to show that ArcA and Fnr regulate >80% of total metabolic flux and 96% of differential gene expression across fermentative and nitrate respiratory conditions. Based on the data, we propose a feedforward with feedback trim regulatory scheme, given the extensive repression of catabolic genes by ArcA and extensive activation of chemiosmotic genes by Fnr. We further corroborated this regulatory scheme by showing a 0.71 r(2) (p<1e-6) correlation between changes in metabolic flux and changes in regulatory activity across fermentative and nitrate respiratory conditions. Finally, we are able to relate the proposed model to a wealth of previously generated data by contextualizing the existing transcriptional regulatory network. Author Summary All heterotrophic organisms must balance the deployment of consumed carbon compounds between growth and the generation of energy. These two competing objectives have been shown, both computationally and experimentally, to exist as the principal dimensions of the function of metabolic networks. Each of these dimensions can also be thought of as the familiar metabolic functions of catabolism, anabolism, and generation of energy. Here we detail how two global transcription factors (TFs), ArcA and Fnr of Escherichia coli that sense redox ratios, act on a genome-wide basis to coordinately regulate these global metabolic functions through transcriptional control of enzyme and transporter levels in changing environments. A model results from the study that shows how global transcription factors regulate global dimensions of metabolism and form a regulatory hierarchy that reflects the structural hierarchy of the metabolic network.
Publisher
PUBLIC LIBRARY SCIENCE
Issue Date
2014-04
Language
English
Article Type
Article
Citation

PLOS GENETICS, v.10, no.4

ISSN
1553-7390
DOI
10.1371/journal.pgen.1004264
URI
http://hdl.handle.net/10203/192660
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 51 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0