Phenotypic modulation of primary vascular smooth muscle cells by short-term culture on micropatterned substrate

Cited 71 time in webofscience Cited 0 time in scopus
  • Hit : 403
  • Download : 162
Loss of contractility and acquisition of an epithelial phenotype of vascular smooth muscle cells (VSMCs) are key events in proliferative vascular pathologies such as atherosclerosis and post-angioplastic restenosis. There is no proper cell culture system allowing differentiation of VSMCs so that it is difficult to delineate the molecular mechanism responsible for proliferative vasculopathy. We investigated whether a micropatterned substrate could restore the contractile phenotype of VSMCs in vitro. To induce and maintain the differentiated VSMC phenotype in vitro, we introduced a micropatterned groove substrate to modulate the morphology and function of VSMCs. Later than 7th passage of VSMCs showed typical synthetic phenotype characterized by epithelial morphology, increased proliferation rates and corresponding gene expression profiles; while short-term culture of these cells on a micropatterned groove induced a change to an intermediate phenotype characterized by low proliferation rates, increased migration, a spindle-like morphology associated with cytoskeletal rearrangement and expression of muscle-specific genes. Microarray analysis showed preferential expression of contractile and smooth muscle cell-specific genes in cells cultured on the micropatterned groove. Culture on a patterned groove may provide a valuable model for the study the role of VSMCs in normal vascular physiology and a variety of proliferative vascular diseases.
Publisher
PUBLIC LIBRARY SCIENCE
Issue Date
2014-02
Language
English
Article Type
Article
Keywords

NEOINTIMAL LESION FORMATION; PROLIFERATION; MIGRATION; ATHEROSCLEROSIS; FIBRONECTIN; EXPRESSION; NANOSCALE; CUES

Citation

PLOS ONE, v.9, no.2, pp.e88089

ISSN
1932-6203
URI
http://hdl.handle.net/10203/189935
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 71 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0