Influence of intermolecular interactions of electron donating small molecules on their molecular packing and performance in organic electronic devices

Cited 81 time in webofscience Cited 73 time in scopus
  • Hit : 265
  • Download : 32
5 Intermolecular interactions have a critical role in determining the molecular packing and orientation of conjugated polymers and organic molecules, leading to significant changes in their electrical and optical properties. Herein, we investigated the effects of intermolecular interactions of electron-donating small molecules on their structural, optical, and electrical properties, as well as on their performance in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). A series of dithienosilole-based small molecule donors were synthesized by introducing different terminal groups of ester and amide groups combined with three different versions of alkyl side chains. In comparison to dithienosilole-based small molecules with ester terminal groups, those with amide terminal groups exhibit strong intermolecular interaction by hydrogen bonding in a non-destructive manner. In addition, in order to control the intermolecular distance during assembly and thus fine-tune the interaction between the small molecule donors, three different alkyl side chains (i.e., n-octyl, n-decyl, and 2-ethylhexyl chains) were introduced into both small molecules with amide and ester terminal groups. The molecular packing and orientation of the small molecule donors were dramatically changed upon modifying the terminal groups and the alkyl side chains, as evidenced by grazing incidence X-ray scattering (GIXS) measurements. This feature significantly affected the electrical properties of the small molecules in OFETs. The trends in the activation energies for charge transport and the hole mobilities in OFETs were consistent with the molecular ordering and orientation propensity. In addition, the nano-scale morphology of small molecules blended with [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM) was also influenced by the intermolecular interaction of small molecule donors. Power conversion efficiencies of more than 4.3% in OPVs were obtained from dithienosilole-based small molecules with ester terminal groups and linear side chains due to the optimized intermolecular interaction and morphology of the active layer.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2013-09
Language
English
Article Type
Article
Keywords

HETEROJUNCTION SOLAR-CELLS; OPEN-CIRCUIT VOLTAGE; POWER CONVERSION EFFICIENCY; LOW-BANDGAP POLYMER; HIGH FILL FACTORS; PHOTOVOLTAIC PERFORMANCE; CHARGE-TRANSPORT; CONJUGATED POLYMERS; END-GROUPS; BLENDS

Citation

JOURNAL OF MATERIALS CHEMISTRY A, v.1, no.46, pp.14538 - 14547

ISSN
2050-7488
DOI
10.1039/c3ta13266h
URI
http://hdl.handle.net/10203/189364
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 81 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0