Prediction of ultra-high ON/OFF ratio nanoelectromechanical switching from covalently-bound C-60 chains

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 428
  • Download : 1
Applying a first-principles computational approach, we have systematically analyzed the effects of [2+2] cycloaddition oligomerization of fullerene C-60 chains on their junction electronic and charge transport properties. For hypothetical infinite C-60 chains, we first establish that the polymerization can in principle increase conductance by several orders of magnitude due to the strong orbital hybridizations and band formation. On the other hand, our simulations of the constant-height scanning tunneling microscope (STM) configuration shows that, in agreement with the recent experimental conclusion, the junction electronic structure and device characteristics are virtually unaffected by the C-60 chain oligomerization. We further predict that the switching characteristics including even the ON/OFF-state assignment will sensitively depend on the substrate metal species due to the Fermi-level pinning at the substrate-side contact and the subsequent energy level bending toward the STM tip-side contact. We finally demonstrate that a force-feedbacked nanoelectromechanical approach in which both of the C-60-electrode distances are kept at short distances before and after switching operations can achieve a metal-independent and significantly improved switching performance due to the Fermi-level pinning in both contacts and the large intrinsic conductance switching capaeity of the C-60 chain oligomerization.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2014-02
Language
English
Article Type
Article
Keywords

CHARGE-TRANSPORT; FULLERENE CHAINS; POLYMERIZATION; FILMS; PSEUDOPOTENTIALS; PRESSURE; CLUSTERS; CARBON

Citation

CARBON, v.67, pp.48 - 57

ISSN
0008-6223
DOI
10.1016/j.carbon.2013.09.054
URI
http://hdl.handle.net/10203/188676
Appears in Collection
PH-Journal Papers(저널논문)EEW-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0