Effect of CO2 gasification reaction on char particle combustion in oxy-fuel conditions

Cited 87 time in webofscience Cited 98 time in scopus
  • Hit : 454
  • Download : 44
CO2 gasification of coal char may play an important role in oxy-combustion environments with flue gas recirculation (FGR), but its effect on the overall reaction rate has not been clearly understood. To give clarity to the likely impact of CO2 gasification on the oxy-combustion of pulverized coal chars, burnout simulations of coal char particles were carried out, adopting apparent char reactivity and a single-film model that includes the Stefan flow effect on mass and energy transfer. Three oxygen concentrations (21%, 30%, and 5% O-2), representing air, oxy-fuel, and oxygen-deficient combustion environments were simulated. A new experimental approach was used to directly measure the CO2 gasification rate of a subbituminous coal char at high temperatures and atmospheric pressure. The measured gasification rate is somewhat higher than previous measurements. The simulation results show that the endothermic gasification reaction reduces the char particle temperature and thereby reduces the oxidation rates. However, due to the contribution of the direct gasification reaction on carbon consumption, the char burnout time and the carbon consumption were improved. The gasification reaction has a greater influence on the char burnout time and the relative carbon consumption in an oxygen-deficient environment and on the drop of particle temperature in an oxygen-enriched environment (for a given gas temperature). In addition, the influence of the gasification reaction on char combustion increases as the gas temperature increases and as the particle size increases. Further, it was observed that the impact of the gasification reaction is dependent on the presumed kinetic rate, which highlights the importance of using reliable kinetic parameters in simulations. Based on the present results, it is important to include the gasification reaction by CO2 when simulating char combustion in oxy-fuel combustion environments. (C) 2013 Elsevier Ltd. All rights reserved.
Publisher
ELSEVIER SCI LTD
Issue Date
2014-03
Language
English
Article Type
Article
Keywords

PULVERIZED COAL CHAR; SUB-BITUMINOUS COAL; CARBON-DIOXIDE; KINETICS; DEVOLATILIZATION; TECHNOLOGY; ATMOSPHERE; PRESSURE; FURNACE; O-2/N-2

Citation

FUEL, v.120, pp.130 - 140

ISSN
0016-2361
DOI
10.1016/j.fuel.2013.12.004
URI
http://hdl.handle.net/10203/187417
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 87 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0