Starvation Driven Diffusion as a Survival Strategy of Biological Organisms

Cited 28 time in webofscience Cited 0 time in scopus
  • Hit : 683
  • Download : 672
DC FieldValueLanguage
dc.contributor.authorCho, Eunjooko
dc.contributor.authorKim, Yong-Jungko
dc.date.accessioned2013-12-06T05:26:49Z-
dc.date.available2013-12-06T05:26:49Z-
dc.date.created2013-06-10-
dc.date.created2013-06-10-
dc.date.issued2013-05-
dc.identifier.citationBULLETIN OF MATHEMATICAL BIOLOGY, v.75, no.5, pp.845 - 870-
dc.identifier.issn0092-8240-
dc.identifier.urihttp://hdl.handle.net/10203/182929-
dc.description.abstractThe purpose of this article is to introduce a diffusion model for biological organisms that increase their motility when food or other resource is insufficient. It is shown in this paper that Fick's diffusion law does not explain such a starvation driven diffusion correctly. The diffusion model for nonuniform Brownian motion in Kim (Einstein's random walk and thermal diffusion, preprint http://amath.kaist.ac.kr/papers/Kim/31.pdf, 2013) is employed in this paper and a Fokker-Planck type diffusion law is obtained. Lotka-Volterra type competition systems with spatial heterogeneity are tested, where one species follows the starvation driven diffusion and the other follows the linear diffusion. In heterogeneous environments, the starvation driven diffusion turns out to be a better survival strategy than the linear one. Various issues such as the global asymptotic stability, convergence to an ideal free distribution, the extinction and coexistence of competing species are discussed.-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.subjectESCHERICHIA-COLI-
dc.subjectSPATIAL SEGREGATION-
dc.subjectFLAGELLAR ROTATION-
dc.subjectBURGERS-EQUATION-
dc.subjectDESERT LOCUST-
dc.subjectDISPERSAL-
dc.subjectCHEMOTAXIS-
dc.subjectMODEL-
dc.subjectEVOLUTION-
dc.subjectMETASTABILITY-
dc.titleStarvation Driven Diffusion as a Survival Strategy of Biological Organisms-
dc.typeArticle-
dc.identifier.wosid000318500600007-
dc.identifier.scopusid2-s2.0-84877028469-
dc.type.rimsART-
dc.citation.volume75-
dc.citation.issue5-
dc.citation.beginningpage845-
dc.citation.endingpage870-
dc.citation.publicationnameBULLETIN OF MATHEMATICAL BIOLOGY-
dc.identifier.doi10.1007/s11538-013-9838-1-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorKim, Yong-Jung-
dc.contributor.nonIdAuthorCho, Eunjoo-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorCross-diffusion-
dc.subject.keywordAuthorFitness-
dc.subject.keywordAuthorLotka-Volterra competition systems-
dc.subject.keywordAuthorNonuniform random walk-
dc.subject.keywordAuthorRandom dispersal-
dc.subject.keywordAuthorSpatial heterogeneity-
dc.subject.keywordAuthorThermal diffusion-
dc.subject.keywordPlusESCHERICHIA-COLI-
dc.subject.keywordPlusSPATIAL SEGREGATION-
dc.subject.keywordPlusFLAGELLAR ROTATION-
dc.subject.keywordPlusBURGERS-EQUATION-
dc.subject.keywordPlusDESERT LOCUST-
dc.subject.keywordPlusDISPERSAL-
dc.subject.keywordPlusCHEMOTAXIS-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusMETASTABILITY-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 28 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0