Multiscale computations for carbon nanotubes based on a hybrid QM/QC (quantum mechanical and quasicontinuum) approach

Cited 11 time in webofscience Cited 11 time in scopus
  • Hit : 542
  • Download : 161
DC FieldValueLanguage
dc.contributor.authorPark, Jong Younko
dc.contributor.authorPark, Chan-Hyunko
dc.contributor.authorPark, Jae Shinko
dc.contributor.authorKong, Ki-jeongko
dc.contributor.authorChang, Hyunjuko
dc.contributor.authorIm, Seyoungko
dc.date.accessioned2010-04-28T06:40:59Z-
dc.date.available2010-04-28T06:40:59Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2010-02-
dc.identifier.citationJOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, v.58, pp.86 - 102-
dc.identifier.issn0022-5096-
dc.identifier.urihttp://hdl.handle.net/10203/17985-
dc.description.abstractAn effective multiscale computing scheme based on QM/QC (quantum mechanics/quasicontinuum) is applied for simulation of Carbon nanotubes (CNTS) mechanics. First, quasicontinuum simulation of deformations of curved crystalline structures is conducted to examine the fully nonlocal behavior of CNTs with the aid of high-order interpolation functions and the "cluster" concept, which facilitates accurate energy approximation for crystals. Next, a multiscale computing approach based on QM/QC hybridization is devised, and applied for simulation of CNT mechanics. The bonding configuration changes, e.g. bond breaking or creation, near defect sites are correctly represented with the QM/QC hybrid model. For studying electronic proper-ties coupled with the mechanical deformation of CNTs, the change of the electrical properties from an initial semiconductor into metal under mechanical bending is investigated. Single-walled CNTs having various types of defects and subjected to uniaxial tension are considered for fracture. The theoretical strength of the CNTs in the presence of each defect is computed based on the QM/QC hybrid scheme, wherein the defect neighborhood is modeled as a QM zone for a first-principle-based calculation using density functional theory (DFT), and the remaining area as a QC zone. This multiscale computing approach greatly improves the accuracy in the prediction of the failure strains of CNTs over a purely molecular mechanical or quasicontinuum method. (C) 2009 Elsevier Ltd All rights reserved.-
dc.description.sponsorshipK. Kong and H. Chang acknowledge the support from Korea Research Council of Industrial Science & Technology for this study. In addition, K. Kong, H. Chang and S. Im appreciate the support from the National R&D Project for Nano Science and Technology (Grant No. M1-0213-04-0003) for this research. S. Im thanks the Center for Nanoscale Mechatronics & Manufacturing, one of the 21st Century Frontier Research Programs, for the Grant (No. 08k1401-00611), and the National Research Foundation of Korea (NRF) for the Grant (No. R0A-2007-000-20115-0).en
dc.languageEnglish-
dc.language.isoen_USen
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectROOM-TEMPERATURE-
dc.subjectSINGLE-WALL-
dc.subjectFRACTURE-
dc.subjectSTRENGTH-
dc.subjectDEFORMATION-
dc.subjectSYSTEMS-
dc.subjectHYDROCARBONS-
dc.subjectPOTENTIALS-
dc.subjectDEFECTS-
dc.subjectDIAMOND-
dc.titleMultiscale computations for carbon nanotubes based on a hybrid QM/QC (quantum mechanical and quasicontinuum) approach-
dc.typeArticle-
dc.identifier.wosid000274551200002-
dc.identifier.scopusid2-s2.0-73649093723-
dc.type.rimsART-
dc.citation.volume58-
dc.citation.beginningpage86-
dc.citation.endingpage102-
dc.citation.publicationnameJOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS-
dc.identifier.doi10.1016/j.jmps.2009.11.009-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorIm, Seyoung-
dc.contributor.nonIdAuthorPark, Chan-Hyun-
dc.contributor.nonIdAuthorKong, Ki-jeong-
dc.contributor.nonIdAuthorChang, Hyunju-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorFracture-
dc.subject.keywordAuthorCarbon nanotubes-
dc.subject.keywordAuthorQuasicontinuum-
dc.subject.keywordAuthorMultiscale computing-
dc.subject.keywordPlusROOM-TEMPERATURE-
dc.subject.keywordPlusSINGLE-WALL-
dc.subject.keywordPlusFRACTURE-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusHYDROCARBONS-
dc.subject.keywordPlusPOTENTIALS-
dc.subject.keywordPlusDEFECTS-
dc.subject.keywordPlusDIAMOND-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0