Passive flow-rate regulators using pressure-dependent autonomous deflection of parallel membrane valves

Cited 51 time in webofscience Cited 44 time in scopus
  • Hit : 410
  • Download : 0
We present passive flow-rate regulators using an autonomous deflection of parallel membrane valves, capable to maintain a constant flow-rate at varying inlet pressure supplied from micropumps. The previous passive flow-rate regulators are difficult to integrate with micropumps, not only because of the complex multi-layer structures, but also because of the high threshold inlet pressure required for flow-rate regulation. In this study, we present passive flow-rate regulators using parallel membrane valves, capable of achieving flow-rate regulation function at the minimum threshold inlet pressure as low as 15 kPa with simple structure formed by a single mask process. The parallel membranes in a flow-rate regulator are designed to deflect and adjust flow resistance autonomously according to the inlet pressure, thus maintaining a constant flow-rate independent of the inlet pressure variation. We designed the four different prototypes of W20, W30, W40, and W50, having parallel membrane widths of 20, 30, 40 and 50 mu m, respectively. We estimated the flow-rate based on both analytical and numerical models. In an experimental study, we observed the deformation of parallel membranes and the flow-rate depending on the inlet pressure. The fabricated prototypes achieved the constant flow-rate of 6.09 +/- 0.32 mu l s(-1) (W20 fabricated by 10 : 1 PDMS (PolyDiMethylSiloxane)) over an inlet pressure of 20 kPa. We also observed that prototypes fabricated by 20 : 1 PDMS, having lower Young's modulus than normal 10 : 1 PDMS, showed a lower threshold pressure and higher regulated flow-rate than prototypes fabricated by 10 : 1 PDMS. W40 fabricated by 20 : 1 PDMS showed a constant flow-rate of 14.53 +/- 0.51 mu l s(-1) over inlet pressure of 15 kPa. The present passive flow-rate regulators have strong potential for applications in integrated microfluidic systems.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2009
Language
English
Article Type
Article
Keywords

DRUG-DELIVERY SYSTEMS; MICROPUMP; DEVICES; FLUIDS

Citation

LAB ON A CHIP, v.9, no.14, pp.2070 - 2075

ISSN
1473-0197
DOI
10.1039/b821524c
URI
http://hdl.handle.net/10203/174405
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 51 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0