Motion Regularization for matting motion blurred objects

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 283
  • Download : 0
This paper addresses the problem of matting motion blurred objects from a single image. Existing single image matting methods are designed to extract static objects that have fractional pixel occupancy. This arises because the physical scene object has a finer resolution than the discrete image pixel and therefore only occupies a fraction of the pixel. For a motion blurred object, however, fractional pixel occupancy is attributed to the object's motion over the exposure period. While conventional matting techniques can be used to matte motion blurred objects, they are not formulated in a manner that considers the object's motion and tend to work only when the object is on a homogeneous background. We show how to obtain better alpha mattes by introducing a regularization term in the matting formulation to account for the object's motion. In addition, we outline a method for estimating local object motion based on local gradient statistics from the original image. For the sake of completeness, we also discuss how user markup can be used to denote the local direction in lieu of motion estimation. Improvements to alpha mattes computed with our regularization are demonstrated on a variety of examples.
ACM Siggraph
Issue Date

37th international conference and exhibition on computer graphics and intractive techniques ACM Siggraph Talks 2010, pp.37 - 37

Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.


  • mendeley


rss_1.0 rss_2.0 atom_1.0