Ultra-low timing-jitter passively mode-locked fiber lasers for long-distance timing synchronization

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 326
  • Download : 0
One of the key challenges for the next-generation light sources such as X-FELs is to implement a timing stabilization and distribution system to enable ∼ 10 fs synchronization of the different RF and laser sources distributed in such facilities with distances up to a few kilometers. These requirements appear to be beyond the capability of traditional RF distribution systems based on temperature-stabilized coaxial cables. A promising alternative is to use an optical transmission system: A train of pulses generated from a laser with low timing jitter is distributed over length-stabilized fiber links to remote locations. The repetition frequency of the pulse train and its higher harmonics contain the synchronization information. At the remote locations, RF signals are extracted simply by using a photodiode and a suitable bandpass filter to pick the desired harmonic of the laser repetition rate. Passively mode-locked Er-doped fiber lasers provide excellent long-term stability. The laser must have extremely low timing jitter, particularly at high frequencies (>1 kHz). Ultimately, the timing jitter is limited by quantum fluctuations in the number of photons making up the pulse and the incoherent photons added in the cavity due to spontaneous emission. The amplitude and phase noise of a home-built laser, generating 100-fs, 1-nJ pulses, was characterized. The measured phase noise (timing jitter) is sub-10 fs. from 1 kHz to Nyquist frequency. In addition to synchronization of accelerators, the ultra-low timing jitter pulse source can find applications in next-generation telecommunication systems.
Publisher
SPIE
Issue Date
2006-10
Language
ENG
Citation

Proceedings of SPIE - The International Society for Optical Engineering, v.6389, no.0, pp.0 - 0

ISSN
0277-786X
URI
http://hdl.handle.net/10203/151714
Appears in Collection
ME-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0