DEVELOPMENT AND REPAIR OF LAMINATE TOOLS BY JOINING PROCESS

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 271
  • Download : 0
Laminate tooling process is a fast and simple method to make metal tools directly for various molding processes such as injection molding in rapid prototyping field. Metal sheets are usually cut, stacked, aligned and joined with brazing or soldering. Through the joining process, all of the metal sheet layers should be rigidly joined. When joining process parameters are not appropriate, there would be defects in the layers. Among various types of defects, non-bonded gaps of the tool surface are of great importance, because they directly affect the surface quality and dimensional accuracy of the final products. If a laminate tool with defects has to be abandoned, it could lead to great loss of time and cost. Therefore a repair method for non-bonded gaps of the surface is essential and has important meaning for rapid prototyping. In this study, a rapid laminate tooling system composed of a CO2 laser, a furnace, and a milling machine was developed. Metal sheets were joined by furnace brazing, dip soldering and adhesive bonding. Joined laminate tools were machined by a high-speed milling machine to improve surface quality. Also, repair brazing and soldering methods of the laminates using the CO₂ laser system have been investigated. ill laser repair process, the beam duration, beam power and beam profile were of great importance, and their effects were simulated by [mite element methods. The simulation results were compared with the experimental ones, and optimal parameters for laser repair process were investigated.
Publisher
대한용접·접합학회
Issue Date
2002
Language
ENG
Citation

대한용접·접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea , pp.402 - 407

URI
http://hdl.handle.net/10203/137401
Appears in Collection
ME-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0