Parabolized stability equations for compressible flows in general curvilinear coordinate system are derived to deal with a broad range of transition prediction problems on complex geometry. A highly accurate finite difference PSE code has been developed using an implicit marching procedure. Compressible and incompressible flat plate flow stability under two-dimensional and three¬dimensional disturbances has been investigated to test the present code. Results of the present computation are found to be in good agreement with the multiple scale analysis and DNS data. Stability calculation results by the present PSE code for compressible boundary layer at Mach numbers ranging from 0.02 to 1.5 are also presented and are again seen to be as accurate as the spectral method.