Polymerized rodlike nanoparticles with controlled surface charge density

Cited 35 time in webofscience Cited 36 time in scopus
  • Hit : 400
  • Download : 10
Stable rodlike nanoparticles with highly controlled surface charge density have been developed by the free radical polymerization of the mixture of polymerizable cationic surfactant, cetyltrimethylammonium 4-vinylbenzoate (CTVB), and hydrotropic salt sodium 4-styrenesulfonate (NaSS) in aqueous solution. The surface charge of the polymerized CTVB/NaSS rodlike nanoparticles was controlled by varying the NaSS concentration during the polymerization process, and the charge variation was interpreted in terms of the overcharging effect in colloidal systems. The SANS measurements show that the diameter of the polymerized CTVB/NaSS rodlike nanoparticles is constant at 4 nm and the particle length ranges from 24 to 85 nm, depending on the NaSS concentration. The polymerized particles are longest when the NaSS concentration is 5 mol % which corresponds to the charge inversion or neutral point. The SANS and zeta potential measurements show that the Coulomb interactions between the particles are strongly dependent on the NaSS concentration and the zeta potential of the polymerized CTVB/NaSS nanoparticles changes from positive to negative (+ 12.8 similar to -44.2 mV) as the concentration of NaSS increases from 0 to 40 mol %. As the NaSS concentration is further increased, the zeta potential is saturated at approximately -50 mV.
Publisher
AMER CHEMICAL SOC
Issue Date
2006-03
Language
English
Article Type
Article
Keywords

CATIONIC SURFACTANT; MICELLES; COUNTERION; MACROION; VESICLES; MODEL; SHAPE; SIZE

Citation

LANGMUIR, v.22, no.6, pp.2844 - 2850

ISSN
0743-7463
DOI
10.1021/la052949a
URI
http://hdl.handle.net/10203/11088
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 35 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0