Atomic-scale structural evolution of Ge(100) surfaces etched by H and D

Cited 12 time in webofscience Cited 9 time in scopus
  • Hit : 591
  • Download : 767
DC FieldValueLanguage
dc.contributor.authorLee, JYko
dc.contributor.authorJung, SJko
dc.contributor.authorMaeng, JYko
dc.contributor.authorCho, YEko
dc.contributor.authorKim, Sehunko
dc.contributor.authorJo, SKko
dc.date.accessioned2009-08-25T02:14:34Z-
dc.date.available2009-08-25T02:14:34Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2004-06-
dc.identifier.citationAPPLIED PHYSICS LETTERS, v.84, no.24, pp.5028 - 5030-
dc.identifier.issn0003-6951-
dc.identifier.urihttp://hdl.handle.net/10203/10740-
dc.description.abstractThe atomic-scale structural evolution of Ge(100) surfaces etched by H(g) and D(g) at T-s=400 K is studied using scanning tunneling microcopy (STM) and field emission-scanning electron microscopy (FE-SEM). The STM investigation reveals that etching of the Ge(100) by H(g) and D(g) proceeds initially via the production of single atom vacancies (SV), dimer vacancies (DV), and subsequently, line defects along the Ge dimer rows. It is also observed that D(g) etches the Ge(100) surface eight times faster than H(g) does. After extensive exposures of the surface to H(g), the FE-SEM images show square etch pits with V-groove shapes, indicating that H(g) etching of the Ge(100) surface proceeds anisotropically. (C) 2004 American Institute of Physics.-
dc.description.sponsorshipKOSEF through the Center for Nanotubes and Nanostructured Composites, the Brain Korea 21 Project, the Advanced Backbone IT Technology Development Project, the National R&D Project for Nano Science and Technology.en
dc.languageEnglish-
dc.language.isoen_USen
dc.publisherAMER INST PHYSICS-
dc.subjectSCANNING-TUNNELING-MICROSCOPY-
dc.subjectHYDROGEN-
dc.subjectTEMPERATURE-
dc.subjectSI(100)-
dc.subjectDESORPTION-
dc.subjectDYNAMICS-
dc.subjectPHASE-
dc.titleAtomic-scale structural evolution of Ge(100) surfaces etched by H and D-
dc.typeArticle-
dc.identifier.wosid000221793600064-
dc.identifier.scopusid2-s2.0-3042854035-
dc.type.rimsART-
dc.citation.volume84-
dc.citation.issue24-
dc.citation.beginningpage5028-
dc.citation.endingpage5030-
dc.citation.publicationnameAPPLIED PHYSICS LETTERS-
dc.identifier.doi10.1063/1.1763635-
dc.contributor.localauthorKim, Sehun-
dc.contributor.nonIdAuthorLee, JY-
dc.contributor.nonIdAuthorJung, SJ-
dc.contributor.nonIdAuthorMaeng, JY-
dc.contributor.nonIdAuthorCho, YE-
dc.contributor.nonIdAuthorJo, SK-
dc.type.journalArticleArticle-
dc.subject.keywordPlusSCANNING-TUNNELING-MICROSCOPY-
dc.subject.keywordPlusHYDROGEN-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusSI(100)-
dc.subject.keywordPlusDESORPTION-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusPHASE-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0