Geometric effect of cell adhesive polygonal micropatterns on neuritogenesis and axon guidance

Cited 32 time in webofscience Cited 0 time in scopus
  • Hit : 363
  • Download : 0
Recent advances in nano-and micro-technology have made it possible to deliver surface-bound extracellular signaling cues to cultured neurons. In this study, we investigated the formation of neurites and axonal outgrowth using various types of polygonal micropatterns ('micropolygon arrays') on cell culture substrates and suggested a novel design principle of in vitro axon guidance. Ten different types of micropolygons (circle, triangle, square, pentagon, hexagon, stars and isosceles triangles) were printed on a culture substrate using micro-contact printing with a mixture of poly-L-lysine and laminin A chain synthetic peptide. E18 rat hippocampal neurons were cultured on the patterned substrates, and the relation between micropatterns and neurite outgrowth was analyzed. Micropolygon arrays had effects on the soma shape and neurite initiation. In the case of regular triangle patterns, neurons showed vertex preference in terms of neurite initiation: neurites were more frequently generated from the vertex region. In the case of isosceles triangles, a major neurite was formed from the sharpest vertex and axons were developed from the sharpest vertex. Thus, the direction of axon growth could be controlled by the orientation of the sharpest vertex in the isosceles triangles. This work suggests that the geometry of cell adhesive regions influences the development of a cultured neuron, and the structure of neural circuits can be designed by controlling axonal outgrowth with individual micropolygons.
Publisher
IOP PUBLISHING LTD
Issue Date
2012-08
Language
English
Article Type
Article
Citation

JOURNAL OF NEURAL ENGINEERING, v.9, no.4

ISSN
1741-2560
DOI
10.1088/1741-2560/9/4/046019
URI
http://hdl.handle.net/10203/103708
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 32 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0