Defect-Engineered Three-Dimensional Graphene-Nanotube-Palladium Nanostructures with Ultrahigh Capacitance

Cited 134 time in webofscience Cited 0 time in scopus
  • Hit : 417
  • Download : 0
The development of three-dimensional carbon-based nanostructures is the next step forward for boosting industrial applications of carbon nanomaterials such as graphenes and carbon nanotubes. Some defects, which have been considered as detrimental factors for maintaining exceptional materials properties of two-dimensional graphene, can be actively used to synthesize three-dimensional graphene-based carbon nanostructures. Here we describe a fast and heretofore unreported defect-engineered method to synthesize three-dimensional carbon nano-hybrid structures with strong bonding between graphene nanoplatelets and carbon nanotubes using simple microwave irradiation and an ionic liquid. Our one-pot method utilizes defect-engineered sequential processes: microwave-based defect generation on graphene nanoplatelets, anchoring of palladium nanoparticles on these defects, and subsequent growth of carbon nanotubes by use of an ionic liquid. The unique three-dimensional nanostructures showed an ultrahigh redox capacitance due to high porosity, a high surface-to-volume ratio from the spacer role of vertically standing one-dimensional carbon nanotubes on graphene sheets, and capacitance-like redox response of the palladium nanoparticles. The proposed defect-engineered method could lead to novel routes to synthesizing three-dimensional graphene-based nanostructures with exceptionally high performance in energy storage systems.
Publisher
AMER CHEMICAL SOC
Issue Date
2012-12
Language
English
Article Type
Article
Citation

ACS NANO, v.6, no.12, pp.10562 - 10570

ISSN
1936-0851
DOI
10.1021/nn3046133
URI
http://hdl.handle.net/10203/103504
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 134 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0